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Introduction

» this course focuses on high-level concurrency control protocols
(logical transaction isolation)

» any implementation of these protocols must also deal with
low-level synchronization (thread safety)

» many data structures must thread-safe: index structures, tuple
storage, job queues, buffer management data structures, etc.

> low-level synchronization often decides how well a program
scales on multi-core CPUs



Case Study: The Adaptive Radix Tree (ART)

» order-preserving index for in-memory database systems
» originally designed for high single-threaded performance
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Lock Coupling
> very easy to apply to ART

» modifications only change 1 node and (sometimes) its parent

» can use read/write locks to allow for more concurrency
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lookup(key, node, level, parent)
readLock(node)
if parent != null
unlock(parent)
// check if prefix matches, may increment level
if !prefixMatches(node, key, level)
unlock(node)
return null // key not found
// find child
nextNode = node.findChild(key[levell)
if isLeaf(nextNode)
value = getLeafValue(nextNode)
unlock(node)
return value // key found
if nextNode == null
unlock(node)
return null // key not found
// recurse to next level
return lookup(key, nextNode, level+l, node)



Performance of Lock Coupling
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Lock-free ART?

» non-blocking data structures are extremely difficult to design,
to implement, and to debug

> every non-trivial lock-free data structure is a research
contribution
» non-blocking data structures add significant overhead
» Bw-tree: extra delta records in front of each node
» Split-ordered list (state-of-the-art lock-free hash table):
dummy nodes
a hypothetical lock-free ART variant would
» require significant changes to the data structure (path
compression is a major issue)
> likely be slower than the methods presented in the following
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Hardware Transactional Memory

> Intel’s Haswell microarchitecture introduced hardware support
in mainstream CPUs

» (only guarantees in-memory atomicity and isolation, but not
durability)



Interface to HTM: Intel Transactional Synchronization
Extensions (TSX)

» Restricted Transactional Memory (RTM):
» XBEGIN: begin
» XEND: commit
» XABORT: rollback

» Hardware Lock Elision (HLE):

» XACQUIRE prefix: “acquire” lock speculatively
» XRELEASE prefix: release lock speculatively
» prefix is ignored on older CPUs



Hardware Lock Elision

> elide lock on first try optimistically
» start HTM transaction instead

> if a conflict happens, the lock is actually acquired

optimistic parallel
execution

validation fails




How Does the CPU implement HTM?

» local L1 cache (32KB) serves as a buffer for transactional
writes and for tracking transactional reads at cache line

granularity (64 bytes)
» cache coherency protocol is used to detect conflicts
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Limitations of Haswell's HTM

abort probability

» size (32KB) and associativity (8-way) of L1 cache limit

transaction size

> interrupts, context switches limit transaction duration

» certain (rarely used) instructions always cause abort

100% =

75% =

50% =

25% =

0% =

T T T
16KB 24KB 32KB

transaction size

abort probability

100% =

75% =

50% =

25% =

0% =

T
100K
transaction duration in cycles (log scale)

T
10M




Hardware Transactional Memory (HTM)

+

very easy to use (with coarse-grained, elided locks)
+ often scales well
— requires special (not yet widespread) hardware support

— sometimes hard to predict/debug behavior
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Optimistic Lock Coupling (1)

» add lock and version to each node
> write:
» acquire lock (exclude other writers)
> increment version when unlocking
» do not acquire locks for nodes that are not modified (traverse
like a reader)
> read:
» do not acquire locks, proceed optimistically
» detect concurrent modifications through versions (and restart
if necessary)
» can track changes across multiple nodes (lock coupling)



Optimistic Lock Coupling (2)
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Optimistic Lock Coupling (2)
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Optimistic Lock Coupling (3)

lookup(key, node, level, parent) 1 lookupOpt(key, node, level, parent, versionParent)
readLock(node) 2 version = readLockOrRestart(node)
1f parent != null 3 if parent != null
unlock(parent) 4 readUnlockOrRestart (parent, versionParent)
// check if prefix matches, may increment level 5 // check if prefix matches, may increment level
if !prefixMatches(node, key, level) 6 if !prefixMatches(node, key, level)
unlock (node) 7 readUnlockOrRestart (node, version)
return null // key not found 8 return null // key not found
// find child 9 // find child
nextNode = node.findChild(key[levell) 10 nextNode = node.findChild(key[levell)
11 checkOrRestart (node, version)
if isLeaf(nextNode) 12 if isLeaf (nextNode)
value = getLeafValue(nextNode) 13 value = getLeafValue(nextNode)
unlock(node) 14 readUnlockOrRestart (node, version)
return value // key found 15 return value // key found
if nextNode == null 16 if nextNode null
unlock (node) 17 readUnlockOrRestart (node, version)
return null // key not found 18 return null // key not found
// recurse to next level 19 // recurse to next level

return lookup(key, nextNode, level+1, node) 20 return lookupOpt(key, nextNode, level+l, node, version)



Optimistic Lock Coupling (4)

+ can easily be applied to most data structures
(no modifications necessary)

+ scales well
+ low overhead

— can lead to (unnecessary) aborts
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Read-Optimized Write EXclusion (ROWEX) (1)

» add lock to each node
> write:

» acquire lock (excludes writers)
> make sure than any modification leaves the tree in a state safe
for readers

> read:
» simply proceed without observing locks or versions



Read-Optimized Write EXclusion (ROWEX) (2)

+

scales well

reads are non-blocking (always successful and there are no
restarts)

easier to implement than lock-free data structures

more difficult to implement than Optimistic Lock Coupling
(requires modifications to the underlying data structure)



Synchronizing ART with ROWEX

> local modifications:
» make key and child pointer accesses atomic (std::atomic)
» make Node4 and Node16 unsorted and append-only
» grow/shrink a node:
> lock node and its parent
» create new node and copy entries
> set parent pointer to the new node
> path compression:

» modify prefix atomically
» add level field to each node
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Insert (50M 8B Integers)
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Lookup/Insert/Remove the Same Key (High Contention, 2
threads)

lookup insert + remove
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Summary

» traditional fine-grained locking does not scale for tree-like
index structures

> locks are fine if they are only acquired by writers and only on
nodes that are modified

» Optimistic Lock Coupling is a highly practical alternative to
the lock-free paradigm

Source: https://github.com/flode/ARTSynchronized

Paper: http://db.in.tum.de/~leis/papers/artsync.pdf
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