
Compiling C++ files

Compiling C++ files

143

Compiling C++ files Hello World 2.0

Hello World 2.0

In C++ the code is usually separated into header files (.h/.hpp) and
implementation files (.cpp/.cc):

sayhello.hpp
#include <string>
void sayhello(const std::string& name);

sayhello.cpp
#include "sayhello.hpp"
#include <iostream>
void sayhello(const std::string& name) {

std::cout << "Hello " << name << '!' << std::endl;
}

Other code that wants to use this function only has to include sayhello.hpp.

144

Compiling C++ files Compiler

Compiler
Reminder: Internally, the compiler is divided into Preprocessor, Compiler, and
Linker.
Preprocessor:
• Takes an input file of (almost) any programming language
• Handles all preprocessor directives (i.e., all lines starting with #) and macros
• Outputs the file without any preprocessor directives or macros

Compiler:
• Takes a preprocessed C++ (or C) file, called translation unit
• Generates and optimizes the machine code
• Outputs an object file

Linker:
• Takes multiple object files
• Can also take references to other libraries
• Finds the address of all symbols (e.g., functions, global variables)
• Outputs an executable file or a shared library

145

Compiling C++ files Compiler

Preprocessor
Most common preprocessor directives:
• #include: Copies (!) the contents of a file into the current file

// include system file iostream:
#include <iostream>
// include regular file myfile.hpp:
#include "myfile.hpp"

• #define: Defines a macro

#define FOO // defines the macro FOO with no content
#define BAR 1 // defines the macro BAR as 1

• #ifdef/#ifndef/#else/#endif: Removes all code up to the next
#else/#endif if a macro is set (#ifdef) or not set (#ifndef)

#ifdef FOO
...
#endif

146

Compiling C++ files Compiler

Compiler
• Every translation unit (usually a .cpp file) results in exactly one object file

(usually .o)
• References to external symbols (e.g., functions that are defined in another
.cpp) are not resolved

mul.cpp
int add(int a, int b);
int mul(int a, int b) {

if (a > 0) { return add(a, mul(a - 1, b)); }
else { return 0; }

}

Assembly generated by the compiler:
_Z3mulii:

testl %edi, %edi
jle .L2
pushq %rbx
movl %edi, %ebx
leal -1(%rdi), %edi
call _Z3mulii

movl %ebx, %edi
popq %rbx
movl %eax, %esi
jmp _Z3addii@PLT

.L2:
xorl %eax, %eax
ret

You can try this out yourself at https://compiler.db.in.tum.de
147

https://compiler.db.in.tum.de

Compiling C++ files Compiler

Linker

• The linker usually does not have to know about any programming language
• Still, some problems with your C++ code will only be found by the linker and

not by the compiler (e.g., ODR violations)
• Most common error are missing symbols, happens either because you forgot

to define a function or global variable, or forgot to add a library
• Popular linkers are: GNU ld, GNU gold, lld (by the LLVM project)

148

Compiling C++ files Compiler

Compiler Flags (2)

• Preprocessor and linker are usually executed by the compiler
• There are additional compiler flags that can influence the preprocessor or the

linker
Advanced flags:

-E Run only preprocessor (outputs C++ file without prepro-
cessor directives)

-c Run only preprocessor and compiler (outputs object file)
-S Run only preprocessor and compiler (outputs assembly as

text)
-g Add debug symbols to the generated binary
-DFOO Defines the macro FOO
-DFOO=42 Defines the macro FOO with value 42
-l<lib> Link library <lib> into executable
-I<path> Also search <path> for #included files
-L<path> Also search <path> for libraries specified with -l

149

Compiling C++ files Debugging

Debugging C++ Programs with gdb

• Debugging by printing text is easy but most of the time not very useful
• Especially for multi-threaded programs a real debugger is essential
• For C++ the most used debugger is gdb (“GNU debugger”)
• It is free and open-source (GPLv2)
• For the best debugging experience a program should be compiled without

optimizations (-O0) and with debug symbols (-g)
• The debug symbols help the debugger to map assembly instructions to the

source code that generated them
• The documentation for gdb can be found here:
https://sourceware.org/gdb/current/onlinedocs/gdb/

150

https://sourceware.org/gdb/current/onlinedocs/gdb/

Compiling C++ files Debugging

gdb commands (1)

To start debugging run the command gdb myprogram. This starts a
command-line interface wich expects one of the following commands:
help Show general help or help about a command.
run Start the debugged program.
break Set a breakpoint. When the breakpoint is reached, the

debugger stops the program and accepts new commands.
delete Remove a breakpoint.
continue Continue running the program after it stopped at a break-

point or by pressing Ctrl + C .
next Continue running the program until the next source line of

the current function.
step Continue running the program until the source line

changes.
nexti Continue running the program until the next instruction of

the current function.
stepi Execute the next instrution.
print Print the value of a variable, expression or CPU register.

151

Compiling C++ files Debugging

gdb commands (2)

frame Show the currently selected stack frame, i.e. the current
stack with its local variables. Usually includes the function
name and the current source line. Can also be used to
switch to another frame.

backtrace Show all stack frames.
up Select the frame from the next higher function.
down Select the frame from the next lower function.
watch Set a watchpoint. When the memory address that is

watched is read or written, the debugger stops.
thread Show the currently selected thread in a multi-threaded pro-

gram. Can also be used to switch to another thread.

Most commands also have a short version, e.g., r for run, c for continue, etc.

152

Compiling C++ files Debugging

Runtime Checks for Debugging
• Stepping though a buggy part of the program is often enough to identify the

bug
• At least, it can help to narrow down the location of a bug
• Sometimes it is better to write code that checks if an invariant holds

The assert macro can be used for that:
• Defined in the <cassert> header
• Can be used to check a boolean expression
• Only enabled when the NDEBUG macro is not defined
• Automatically enabled in debug builds when using CMake

div.cpp
#include <cassert>
double div(double a, int b) {

assert(b != 0);
return a / b;

}

When this function is called with b==0, the program will crash with a useful error
message.

153

Compiling C++ files Debugging

Automatic Runtime Checks (“Sanitizers”)

• Modern compilers can automatically add several runtime checks, they are
usually called sanitizers

• Most important ones:
• Address Sanitizer (ASAN): Instruments memory access instructions to check

for common bugs
• Undefined-Behavior Sanitizer (UBSAN): Adds runtime checks to guard against

many kinds of undefined behavior
• Because sanitizers add overhead, they are not enabled by default
• Should normally be used in conjunction with -g for debug builds
• Compiler option for gcc/clang: -fsanitize=<sanitizer>

• -fsanitize=address for ASAN
• -fsanitize=undefined for UBSAN

• Should be enabled by default in your debug builds, unless there is a very
compelling reason against it

154

Compiling C++ files Debugging

UBSAN Example

foo.cpp
#include <iostream>
int main() {

int a; int b;
std::cin >> a >> b;
int c = a * b;
std::cout << c << std::endl;
return 0;

}

$ g++ -std=c++17 -g -fsanitize=undefined foo.cpp -o foo
$./foo
123456
789123
foo.cpp:7:9: runtime error: signed integer overflow: 123456 * 789123

cannot be represented in type 'int'↪→

-1362278720

155

Declarations and Definitions

Declarations and Definitions

156

Declarations and Definitions Objects

Objects

One of the core concepts of C++ are objects.
• The main purpose of C++ programs is to interact with objects in order to

achieve some goal
• Examples of objects are local and global variables
• Examples of concepts that are not objects are functions, references, and

values

An object in C++ is a region of storage with certain properties:
• Size
• Alignment
• Storage duration
• Lifetime
• Type
• Value
• Optionally, a name

157

https://en.cppreference.com/w/cpp/language/object

Declarations and Definitions Objects

Storage Duration (1)

Every object has one of the following storage durations:
automatic:
• Objects with automatic storage duration are allocated at the beginning of the

enclosing scope and deallocated automatically (i.e., it is not necessary to
write code for this) at its end

• Local variables have automatic storage duration
static:
• Objects with static storage duration are allocated when the program begins

(usually even before main() is executed!)
• They are deallocated automatically when the program ends
• All global variables have static storage duration

158

https://en.cppreference.com/w/cpp/language/storage_duration#Storage_duration

Declarations and Definitions Objects

Storage Duration (2)
thread:
• Objects with thread storage duration are allocated when a thread starts and

deallocated automatically when it ends
• In contrast to objects with static storage duration, each thread gets its own

copy of objects with thread storage duration
dynamic:
• Objects with dynamic storage duration are allocated and deallocated by using

dynamic memory management
• Note: Deallocation must be done manually!

int foo = 1; // static storage duration
static int bar = 2; // static storage duration
thread_local int baz = 3; // thread storage duration
void f() {

int x = 4; // automatic storage duration
static int y = 5; // static storage duration

}

159

Declarations and Definitions Objects

Lifetime

In addition to their storage duration objects also have a lifetime which is closely
related. References also have a lifetime.
• The lifetime of an object or reference starts when it was fully initialized
• The lifetime of an object ends when its destructor is called (for objects of

class types) or when its storage is deallocated or reused (for all other types)
• The lifetime of an object never exceeds its storage duration.
• The lifetime of a reference ends as if it were a “scalar” object (e.g. an int

variable)
Generally, using an object outside of its lifetime leads to undefined behavior.

160

https://en.cppreference.com/w/cpp/language/lifetime

Declarations and Definitions Namespaces

Namespaces (1)

Larger projects may contain many names (functions, classes, etc.)
• Should be organized into logical units
• May incur name clashes
• C++ provides namespaces for this purpose

Namespace definitions

namespace identifier {
namespace-body

}

Explanation
• identifier may be a previously unused identifier, or the name of a namespace
• namespace-body may be a sequence of declarations
• A name declared inside a namespace must be qualified when accessed from

outside the namespace (:: operator)

161

https://en.cppreference.com/w/cpp/language/namespace

Declarations and Definitions Namespaces

Namespaces (2)

Qualified name lookup

namespace A {
void foo() { /* do something */ }
void bar() {

foo(); // refers to A::foo
}
}
namespace B {
void foo() { /* do something */ }
}
int main() {

A::foo(); // qualified name lookup
B::foo(); // qualified name lookup

foo(); // ERROR: foo was not declared in this scope
}

162

Declarations and Definitions Namespaces

Namespaces (3)

Namespaces may be nested

namespace A { namespace B {
void foo() { /* do something */ }
}}

// equivalent definition
namespace A::B {
void bar() {

foo(); // refers to A::B::foo
}
}

int main() {
A::B::bar();

}

163

Declarations and Definitions Namespaces

Namespaces (4)
Code can become rather confusing due to large number of braces
• Use visual separators (comments) at sensible points
• (Optionally) add comments to closing namespace braces

//----------------------------------
namespace A::B {
//----------------------------------
void foo() {

// do something
}
//----------------------------------
void bar() {

// do something else
}
//----------------------------------
} // namespace A::B
//----------------------------------

164

Declarations and Definitions Namespaces

Namespaces (5)
• Always using fully qualified names makes code easier to read
• Sometimes it is obvious from which namespace the names come from in

which case one prefers to use unqalified names
• For this using and using namespace can be used
• using namespace X imports all names from namespace X into the current

one
• using X::a only imports the name a from X into the current namespace

namespace A { int x; }
namespace B { int y; int z; }
using namespace A;
using B::y;
int main() {

x = 1; // Refers to A::x
y = 2; // Refers to B::y
z = 3; // ERROR: z was not declared in this scope
B::z = 3; // OK

}

165

Declarations and Definitions Declarations

Declarations

C++ code that introduces a name that can then be referred to is called
declaration. There are many different kinds of declarations:
• variable declarations: int a;
• function declarations: void foo();
• namespace declarations: namespace A { }
• using declarations: using A::x;
• class declarations: class C;
• template declarations: template <typename T> void foo();
• . . .

166

https://en.cppreference.com/w/cpp/language/declarations

Declarations and Definitions Declarations

Declaration Specifiers

Some declarations can also contain additional specifiers. The following lists shows
a few common ones and where they can be used. We will see some more specifiers
in future lectures.

static Can be used for variable and function declarations, affects the
declaration’s linkage (see next slide). Also, objects declared with
static have static storage duration.

extern Can be used for variable declarations in which case it also affects
their linkage. Objects declared with extern also have static
storage duration.

inline Can be used for variable and function declarations. Despite the
name, has (almost) nothing to do with the inlining optimization.
See the slides about the “One Definition Rule” for more
information.

167

Declarations and Definitions Declarations

Linkage
Most declarations have a (conceptual) property called linkage. This property
determines how the name of the declaration will be visible in the current and in
other translation units. There are three types of linkage:

no linkage:
• Names can only be referenced from the scope they are in
• Local variables

internal linkage:
• Names can only be referenced from the same translation unit
• Global functions and variables declared with static
• Global variables that are not declared with extern
• All declarations in namespaces without name (“anonymous namespaces”)

external linkage:
• Names can be referenced from other translation units
• Global functions (without static)
• Global variables with extern

168

https://en.cppreference.com/w/cpp/language/storage_duration#Linkage

Declarations and Definitions Definitions

Definitions

When a name is declared it can be referenced by other code. However, most uses
of a name also require the name to be defined in addition to be declared.
Formally, this is called odr-use and covers the following cases:
• The value of a variable declaration is read or written
• The address of a variable or function declaration is taken
• A function is called
• An object of a class declaration is used

Most declarations are also definitions, with some exceptions such as
• Any declaration with an extern specifier and no initializer
• Function declarations without function bodies
• Declaration of a class name (“forward declaration”)

169

https://en.cppreference.com/w/cpp/language/definition

Declarations and Definitions Definitions

One Definition Rule (1)

One Definition Rule (ODR)
• At most one definition of a name is allowed within one translation unit
• Exactly one definition of every non-inline function or variable that is odr-used

must appear within the entire program
• Exactly one definition of an inline-function must appear within each

translation unit where it is odr-used
• Exactly one definition of a class must appear within each translation unit

where the class is used and required to be complete

For subtleties and exceptions to these rules: See reference documentation

170

https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

Declarations and Definitions Definitions

One Definition Rule (2)

a.cpp
int i = 5; // OK: declares and defines i
int i = 6; // ERROR: redefinition of i

extern int j; // OK: declares j
int j = 7; // OK: (re-)declares and defines j

Separate declaration and definition is required to break circular dependencies
b.cpp

void bar(); // declares bar
void foo() { // declares and defines foo

bar();
}
void bar() { // (re-)declares and defines bar

foo();
}

171

Declarations and Definitions Definitions

One Definition Rule (3)

a.cpp
int foo() {

return 1;
}

b.cpp
int foo() {

return 2;
}

Trying to link a program consisting of a.cpp and b.cpp will fail

$ g++ -c -o a.o a.cpp
$ g++ -c -o b.o b.cpp
$ g++ a.o b.o
/usr/bin/ld: b.o: in function `foo()':
b.cpp:(.text+0x0): multiple definition of `foo()'; a.o:a.cpp:(.text+0x0): first defined

here↪→
collect2: error: ld returned 1 exit status

172

Declarations and Definitions Definitions

One Definition Rule (4)
What about helper functions/variables local to translation units? → Internal
linkage!
• Option A: Use static (only works for variables and functions)

a.cpp
static int foo = 1;
static int bar() {

return foo;
}

• Option B: Use anonymous namespaces
b.cpp

namespace {
//----------------------------------
int foo = 1;
int bar() {

return foo;
}
//----------------------------------
}

173

Declarations and Definitions Header and Implementation Files

Header and Implementation Files

When distributing code over several files it is usually split into header and
implementation files
• Header and implementation files have the same name, but different suffixes

(e.g. .hpp for headers, .cpp for implementation files)
• Header files contain only declarations that should be visible and usable in

other parts of the program
• Implementation files contain definitions of the names declared in the

corresponding header
• At least the header files should include some documentation

Header files can be included in implementation files and other headers through
preprocessor directives.
Syntax:
• #include "path" where path is a relative path to the header file
• #include <path> like the first version but only system directories are

searched for the path

174

https://en.cppreference.com/w/cpp/preprocessor/include

Declarations and Definitions Header and Implementation Files

Header Guards (1)

A file may transitively include the same header multiple times
• May lead to unintentional redefinitions
• It is infeasible (and often impossible) to avoid duplicating transitive includes

entirely
• Instead: Header files themselves ensure that they are included at most once

in a single translation unit
path/A.hpp

inline int foo() { return 1; }

path/B.hpp
#include "path/A.hpp"
inline int bar() { return foo(); }

main.cpp
#include "path/A.hpp"
#include "path/B.hpp" // ERROR: foo is defined twice

175

Declarations and Definitions Header and Implementation Files

Header Guards (2)

Solution A: Use traditional header guards
path/A.hpp

// use any unique name, usually composed from the path
#ifndef H_path_A
#define H_path_A
//----------------------------------
inline int foo() { return 1; }
//----------------------------------
#endif

path/B.hpp
#ifndef H_path_B
#define H_path_B
//----------------------------------
#include "path/A.hpp"
//----------------------------------
inline int bar() { return foo(); }
//----------------------------------
#endif

176

Declarations and Definitions Header and Implementation Files

Header Guards (3)

Solution B: Use #pragma once preprocessor directive
path/A.hpp

#pragma once
//----------------------------------
inline int foo() { return 1; }

path/B.hpp
#pragma once
//----------------------------------
#include "path/A.hpp"
//----------------------------------
inline int bar() { return foo(); }

177

Declarations and Definitions Header and Implementation Files

Example: Header and Implementation Files (1)

The example CMake project from last lecture shows how header and
implementation files are used. These are the header files:

sayhello.hpp
#pragma once
#include <string>

/// Print a greeting for `name`
void sayhello(const std::string& name);

saybye.hpp
#pragma once
#include <string>

/// Say bye to `name`
void saybye(const std::string& name);

178

Declarations and Definitions Header and Implementation Files

Example: Header and Implementation Files (2)
The two header files have the following associated implementation files:

sayhello.cpp
#include "sayhello.hpp"
#include <iostream>

/// Print a greeting for `name`
void sayhello(const std::string& name) {

std::cout << "Hello " << name << '!' << std::endl;
}

saybye.cpp
#include "saybye.hpp"
#include <iostream>

/// Say bye to `name`
void saybye(const std::string& name) {

std::cout << "Bye " << name << '!' << std::endl;
}

179

Declarations and Definitions Header and Implementation Files

Example: Header and Implementation Files (3)

The “main” file, in the example print_greetings.cpp only includes the
headers:

print_greetings.cpp
#include <iostream>
#include "sayhello.hpp"
#include "saybye.hpp"

int main(int argc, const char** argv) {
if (argc != 2) {

std::cerr << "Please write: ./print_greetings name" <<
std::endl;↪→

return 1;
}
sayhello(argv[1]);
saybye(argv[1]);
return 0;

}

180

	Compiling C++ files
	Hello World 2.0
	Compiler
	Debugging

	Declarations and Definitions
	Objects
	Namespaces
	Declarations
	Definitions
	Header and Implementation Files

