Miscellaneous

Miscellaneous

Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (1)

Virtual addresses are translated to physical addresses by the MMU
® Virtual addresses are 64-bit integers on x86-64
® On x86-64, only the lower 48 bit of pointers are actually used

® The upper 16 bit of pointers are usually required to be zero

The upper 16 bit of each pointer can be used to store useful information
® Usually called pointer tagging
® Tagged pointers require careful treatment to avoid memory bugs

® |f portability is desired, an implementation that works without pointer
tagging has to be provided (e.g. through preprocessor defines)

e Allows us to modify two values (16 bit tag and 48 bit pointer) with a single
atomic instruction

Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (2)

We can store different things in the upper 16 bit of pointers
® Up to 16 binary flags
® A single 16 bit integer

Guidelines
® Always wrap tagged pointers within a suitable data structure
® Do not expose tagged pointers in raw form
® Store tagged pointers as uintptr_t internally

® Use bit operations to access tag and pointer parts

Pointer Tagging on x86-64 (3)

Using the upper 16 bit to store information

static constexpr uint64_t shift = 48;
static constexpr uintptr_t mask = (1ull << shift) - 1;

uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{
return (reinterpret_cast<uintptr_t>(ptr) & mask) | (tag << shift);

uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer

{
return taggedPtr >> shift;

void* getPointer (uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr & mask);

Pointer Tagging on x86-64 (4)

Using the lower 16 bit to store information

static constexpr uint64_t shift = 16;
static constexpr uintptr_t mask = (1ull << shift) - 1;

uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{
return (reinterpret_cast<uintptr_t>(ptr) << shift) | (tag & mask);

uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer
{

return taggedPtr & mask;

void* getPointer (uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr >> shift);

Miscellaneous Vectorization

Vectorization

Most modern CPUs contain vector units that can exploit data-level parallelism

® Apply the same operation (e.g. addition) to multiple data elements in a single
instruction

® Can greatly improve the performance of suitable algorithms (e.g. image
processing)

® Not all algorithms are amenable to vectorization

Overview
® Can be used through extensions to the x86 instruction set architecture

® Commonly referred to as single instruction, multiple data (SIMD) instructions

Can be used in C/C++ code through intrinsic functions

The Intel Intrinsics Guide provides an excellent documentation

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Miscellaneous Vectorization

SIMD Extensions

SIMD extensions have evolved substantially over time
°* MMX
e SSE, SSE2, SSE3, SSE4
°* AVX, FMA, AVX2, AVX-512

Modern CPUs retain backward compatibility with older instruction set extensions

® The CPU flags exposed in /proc/cpuinfo indicate which extensions are
supported

® We will briefly introduce AVX (avx flag in /proc/cpuinfo)
® AVX should be supported on most reasonably modern CPUs

Miscellaneous Vectorization

AVX Data Types

AVX data types and intrinsics are defined in the <immintrin.h> header
® AVX adds 16 registers which are 256 bits wide each
® Can hold multiple data elements

® Can be used through special opaque data types

AVX data types
® __m256: Can hold eight 32 bit floating point values
® __m256d: Can hold four 64 bit floating point values

® _ m2561: Can hold thirty-two 8 bit, sixteen 16 bit, eight 32 bit or four 64 bit
integer values

® Commonly referred to as vectors (not to be confused with std: :vector)

Other SIMD extensions follow similar naming conventions for data types

Miscellaneous Vectorization

AVX Intrinsics

Usually, there are separate intrinsics for each data type
e AVX intrinsics usually begin with _mm256
® Next is a name for the instruction (e.g. loadu)

® Finally, the data type is indicated

® ps for __m256
® pd for __m256d
® 59256 for __m2561

® Example: _mm256_loadu_ps

We will only show intrinsics for __m256 in the following
® |Intrinsics for other data types usually follow similar patterns

® Exception: AVX does not contain many arithmetic operations on integer
types (added in AVX2)

Miscellaneous Vectorization

Constant Values

We cannot directly modify individual data elements in AVX data types
® We have to use intrinsics for that purpose

® |ntrinsics usually return the result of a modification

We can create constant vectors
® _m256 _mm256_setl_ps(float a)
® Returns a vector with all elements equal to a

® _m256 _mm256_set_ps(float e7, ..., float e0)
® Returns a vector with the elements e®, ..., e7
® m256 _mm256_setr_ps(float e®, ..., float e7)

® Returns a vector with the elements e®, ..., e7

Miscellaneous Vectorization

Loading and Storing

Loading data from memory
® _m256 _mm256_load_ps(const floatx addr)

® |oad eight 32 bit floating point values from memory starting at addr
® addr has to be aligned to a 32 byte boundary

® m256 _mm256_loadu_ps(const float*x addr)

® |oad eight 32 bit floating point values from memory starting at addr
® addr does not have to be aligned beyond usual float alignment

Storing data to memory
® void _mm256_store_ps(float* addr, __m256 a)
® Store eight 32 bit floating point values in a to memory starting at addr
® addr has to be aligned to a 32 byte boundary
® void _mm256_storeu_ps(float* addr, __m256 a)

® Store eight 32 bit floating point values in a to memory starting at addr
® addr does not have to be aligned beyond usual float alignment

Miscellaneous Vectorization

Arithmetic Operations

AVX provides many arithmetic operations on vectors
® All the usual arithmetic operations

® Bitwise operations on integer types

Example: Adding vectors
® _m256 _mm256_add_ps(__m256 a, __m256 b)

® Adds the individual elements of the vectors a and b
® Returns the result of the addition

Miscellaneous Vectorization

Example

Computing the sum of elements in an std: :vector

#include <immintrin.h>
#include <vector>

float fastSum(const std::vector<float>& vec) {
__m256 vectorSum = _mm256_setl_ps(0);
uint64_t index;
for (index = 0; (index + 8) <= vec.size(); index += 8) {
__m256 data = _mm256_loadu_ps(&vec[index]);
vectorSum = _mm256_add_ps(vectorSum, data);

float sum = 0;
float buffer([8];
_mm256_storeu_ps(buffer, vectorSum);
for (unsigned i = 0; i < 8; ++1)
sum += buffer[i];
for (; index < vec.size(); ++index)
sum += vec[index];

return sum;

Miscellaneous Vectorization

Further Operations

AVX contains many more instructions
® Comparison operations on vectors

® Masked operations

Allows vectorization of many algorithms
® Vectorization is not guaranteed to improve performance
® Generally, compute-heavy algorithms benefit greatly from vectorization

® Algorithms with a lot of fine-grained branching or many loads and stores may
not benefit

® \ectorization is always an optimization that should not be applied
prematurely

Miscellaneous Outlook on C++20

The C++20 Standard

C++20 is the latest release of the C++ standard

® In January 2020 the ISO C++ committee has announced C++20 to be
“technically finalized"

® Adds some very cool features to the C++ standard
® The committee is now working on the next version: C++23

Compiler support is still intermittent
® Most compilers already support at least some C++20 features
® GCC 8/9/10 in particular support quite a few C++20 features

https://en.cppreference.com/w/cpp/compiler_support

Miscellaneous Outlook on C++20

Constraints and Concepts (1) C;

We have outlined previously how templates act similar to duck typing

® Any type can be specified as an argument for a template type parameter

Compilation will fail if type does not satisfy some implicit requirements

Compiler does not know about these implicit requirements

Compilation errors can only refer to specific cause of compilation failure (e.g.
an ill-formed expression)

Constraints and concepts explicitly specify requirements on template parameters
® Allows the compiler to check requirements
® Allows the compiler to generate much more informative error messages

® Greatly improves safety (e.g. explicit concepts instead of implicit named
requirements in the standard library)

https://en.cppreference.com/w/cpp/language/constraints

Miscellaneous Outlook on C++20

Constraints and Concepts (2)

Sorting a range in C++17
Sort.hpp

#pragma once

template <typename T>
void swap(T& a, T& b) {
T tmp(std::move(a));
a = std::move(b);
b = std::move(tmp);

template <typename T>
void sort(T* begin, Tx end) {
if (begin == end) return;

for (Tx i = begin; i != end; ++1)
for (Tx j = (i + 1); j != end; ++j)
if (xi > xj) swap(*i, *j);

Miscellaneous Outlook on C++20

Constraints and Concepts (3)

We can easily break the code from the previous example

main.cpp

#include "Sort.hpp"
#include <vector>

struct Foo {
unsigned value;

Foo(unsigned value) : value(value) {}
Foo(Foo&&) = delete;
Foo& operator=(Foo&&) = delete;

Foo v[] = {3, 6, 2, 1, 4, 8, T};
sort(&v[0], &v[7]);

Miscellaneous Outlook on C++20

Constraints and Concepts (4)

Why does the Foo struct break our code
® We implicitly required that T is move-constructible
® We implicitly required that T is move-assignable

® We implicitly required that T implements operator>

Initial compile error by GCC 9

> g++-9 -std=c++17 -0 main main.cpp
In file included from main.cpp:1:
Sort.hpp: In qinstantiation of ‘void sort(Tx, T*) [with T = Foo]’:
main.cpp:15:21: required from here
Sort.hpp:41:17: error: no match for ‘operator>’ (operand types are ‘Foo’ and
— ‘Foo’)

41 | if (xi > *xj)

| JUPSPOY PP

Miscellaneous Outlook on C++20

Constraints and Concepts (5)

We are not done once we implement operator> for Foo
>-]

> g++ -std=c++17 -o main main.cpp
In file included from main.cpp:1:
Sort.hpp: In instantiation of ‘void swap(T&, T&) [with T = Foo]’:
Sort.hpp:42:17: required from ‘void sort(T*, T*) [with T = Foo]’
main.cpp:15:21: required from here
Sort.hpp:28:6: error: use of deleted function ‘Foo::Foo(Foo&&)’
28 | T tmp(std::move(a));
| Amn
main.cpp:7:4: note: declared here
7| Foo(Foo&&) = delete;
| Amn
In file dincluded from main.cpp:1:
Sort.hpp:29:6: error: use of deleted function ‘Foo& Foo::operator=(Foo&&)’
29 | a = std::move(b);
| IO SO
main.cpp:8:9: note: declared here
8 | Foo& operator=(Foo&&) = delete;
| Anmmmnmn
In file included from main.cpp:1:
Sort.hpp:30:6: error: use of deleted function ‘Foo& Foo::operator=(Foo&&)’
30 | b = std::move(tmp);
| ol
main.cpp:8:9: note: declared here
8 | Foo& operator=(Foo&&) = delete;

| A

Miscellaneous Outlook on C++20

Concepts and Constraints (6)

In C++20, we could add suitable concepts as follows
Sort.hpp

template <typename T>
concept MoveConstructible = requires (T a) { T(std::move(a)); };

template <typename T>
concept MoveAssignable = requires (T a, T b) { a = std::move(b); };

template <typename T>
concept Comparable = requires (T a, T b) { a > b; }

template <typename T>
concept Swappable = MoveConstructible<T> && MoveAssignable<T>;

https://en.cppreference.com/w/cpp/language/constraints

Miscellaneous Outlook on C++20

Concepts and Constraints (7)

Subsequently, we could impose constraints on the template parameters
Sort.hpp

template <typename T> requires Swappable<T>
void swap(T& a, T& b)
// Swap two elements

{
T tmp(std::move(a));
a = std::move(b);
b = std::move(tmp);
}
/=== oo

template <typename T> requires Comparable<T> && Swappable<T>
void sort(Tx begin, T*x end)

// Sort a range

{

if (begin == end) return;

for (Tx i = begin; i != end; ++1)
for (Tx j = (i + 1); j != end; ++j)
if (k1 > *]) swap(x1, *j);

Miscellaneous Outlook on C++20

Concepts and Constraints (8)

The compiler will now check that all constraints are fulfilled

> g++-9 -fconcepts -std=c++17 -o main main.cpp
main.cpp: In function ‘int main()’:
main.cpp:15:21: error: cannot call function ‘void sort(Tx, Tx) [with T = Foo]’
15 | sort(&v[0], &v[7]);
| A
In file included from main.cpp:1:
Sort.hpp:34:6: note: constraints not satisfied
34 | void sort(Tx begin, T* end)
| Ao
Sort.hpp:20:9: note: within ‘template<class T> concept const bool
< Comparable<T> [with T = Foo]’
20 | concept Comparable = requires (T a, T b) {
| Aonmnnmmnnm~
Sort.hpp:20:9: note: with ‘Foo a’
Sort.hpp:20:9: note: with ‘Foo b’
Sort.hpp:20:9: note: the required expression ‘(a > b)’ would be 1ill-formed

Miscellaneous Outlook on C++20

Concepts and Constraints (9)

The compiler will now check that all constraints are fulfilled

main.cpp: In function ‘int main()’:
main.cpp:15:21: error: cannot call function ‘void sort(T*, Tx) [with T = Foo]’
15 | sort(&v[0], &v[7]);
| Y
In file included from main.cpp:1:
Sort.hpp:34:6: note: constraints not satisfied
34 | void sort(T* begin, Tx end)
| Ammn
Sort.hpp:17:9: note: within ‘template<class T> concept const bool Swappable<T> [with T =
— Foo]’
17 | concept Swappable = MoveConstructible<T> && MoveAssignable<T>;
| A
Sort.hpp:7:9: note: within ‘template<class T> concept const bool MoveConstructible<T>
— [with T = Foo]’
7 | concept MoveConstructible = requires (T a) {
| Ao oo
Sort.hpp:7:9: note: with ‘Foo a’
Sort.hpp:7:9: note: the required expression ¢(T)(std::move(a))’ would be ill-formed
Sort.hpp:12:9: note: within ‘template<class T> concept const bool MoveAssignable<T> [with
— T = Foo]’
12 | concept MoveAssignable = requires (T a, T b) {
| Ammmmmmmnmmnmnns
Sort.hpp:12:9: note: with ‘Foo a’
Sort.hpp:12:9: note: with ‘Foo b’
Sort.hpp:12:9: note: the required expression ‘a = std::move(b)’ would be ill-formed

Miscellaneous Outlook on C++20

Improvements to typename

® For dependent names that depend on a template argument, the compiler
assumes that the names refer to variables

® typename can be used to tell the compiler that it should be a type
® In many contexts using a variable does not make sense, so in C++20
typename is not required there anymore

Example code in C++17:

template <typename T>
struct Foo {

typename T::A a;

typename T::B foo(typename T::C c);
}s

Equivalent code in C++20:

template <typename T>
struct Foo {

T::A a;

T::B foo(T::C c¢);
}s

Miscellaneous Outlook on C++20

Three-Way Comparison Operator

C++20 introduces a designated operator for three-way comparison
® Syntax: lhs <=> rhs
® Can be overloaded for custom types

® Default implementation provided for fundamental types

Returns an object with the following semantics
® (a<=>b) <0iffa<b
® (a <=>b) == 0iffa ==
® (a<=>b) >»0iffa>b

https://en.cppreference.com/w/cpp/language/operator_comparison#Three-way_comparison

Miscellaneous Outlook on C++20

std: :span (1) @

std: :span is a straightforward extension of std::string_view
® Represents a contiguous sequence of zero-indexed objects
® A span can have static extent where the number of elements is encoded as a

template argument
® A span can have dynamic extent where the number of elements is a member

variable

Benefits
® Similar benefits as std: :string_view
® Lightweight proxy for a range of objects

® Constant-time operations

https://en.cppreference.com/w/cpp/container/span

Miscellaneous Outlook on C++20
std: :span (2)

Example

// C++17
void fool7(unsignedx begin, unsigned* end) {
// do something

unsigned* mid = begin + (end - begin) / 2;
foo(begin, mid);
foo(mid, end);

// do something more

// C++20

void fo0020(std::span<unsigned> span) {
// do something
size_t size = span.size();
foo(span.subspan(0, size / 2));

foo(span.subspan(size / 2, size - (size / 2)));

// do something more

Miscellaneous Outlook on C++20

Ranges @

C++20 introduces the range concept
® Ranges can be seen as a generalization of the iterator concept

® Ranges support a variety of view adapters that can be chained to specify
complex operations on ranges

#include <iostream>
#include <ranges>
#include <vector>

int main() {
std::vector<unsigned> v{0, 1, 2, 3, 4, 5, 6};
auto even = [](unsigned i) { return (i % 2 == 0); }
auto square = [](unsigned i) { return i * i; }

for (auto i : v | std::view::filter(even) | std::view::transform(square))
std::cout << i << " "5 // prints 0 4 16 36

https://en.cppreference.com/w/cpp/ranges

Miscellaneous Outlook on C++20

Modules (1)

Modules help structure large amounts of code into logical parts
® A module consists of multiple translation units called module units
® Module units can import other modules

® Module units can export certain declarations

Facilitates encapsulation of logically independent parts

® Exported declarations are visible to name lookup in translation units that
import the module

® QOther declarations are not visible to name lookup

Reduces compilation overhead
® Exported definitions are compiled into easy-to-parse binary format

® No need to recursively parse transitive includes

https://en.cppreference.com/w/cpp/language/modules

Miscellaneous Outlook on C++20

Modules (2)

Example
greeting.cpp

export module greeting;
import <string>;

export std::string getGreeting() {
return "Hello world!";

main.cpp
import greeting;
import <iostream>;

int main() {
std::cout << getGreeting() << std

irendl;

Miscellaneous Outlook on C++20

Coroutines

A coroutine is a function that can suspend execution to be resumed later
® Execution is suspended by returning to the caller
® Allows for sequential code that executes asynchronously
® Allows for lazily computed infinite sequences

generator<int> dota(int n = 0) {
while (true)
co_yield n++;

https://en.cppreference.com/w/cpp/language/coroutines

Miscellaneous Outlook on C++20

Designated Initializers

C++20 introduces designated initializers
® Allows explicit initialization of class members by name
® This was already possible in C and supported by many compilers

® C++20 now supports a subset of what is allowed in C

struct Foo {
int a;
int by
}s
Foo f{ .a =1, .b =2 };

https://en.cppreference.com/w/cpp/language/aggregate_initialization#Designated_initializers

Bit Manipulation

Miscellaneous Outlook on C++20

The <bit> header introduces several functions for bit inspection and
manipulation.

std:

:bit_cast: Inspect the object representation (instead of using

reinterpret_cast with potential undefined behavior)

std:
std:
std:
std::
std:

:endian: Check the endianness of the system
:has_single_bit: Check if number is power of two
tbit_ceil, std::bit_floor: Find the next/previous power of two

rotl, std::rotr: Rotate bits

:countl_zero: Count the number of consecutive zero bits starting

from the most significant bit

std:

:popcount: Count the number of one bits

https://en.cppreference.com/w/cpp/header/bit

Miscellaneous Outlook on C++20

New atomic types (1)

C4++20 introduces std: :atomic_ref<T>
® std::atomic_ref<T> allows atomic access to objects of T

® Before C++20 this would require that the object is itself declared as
std::atomic<T>

#include <atomic>

void atomicIncrement(int& a) {
// a is not atomic<int>, so in C++17 it can't be accessed
// atomically. This works in C++20 and 1is thread-safe.
std::atomic_ref aAtomic(a);
aAtomic.fetch_add(1l);

https://en.cppreference.com/w/cpp/atomic/atomic_ref

Miscellaneous Outlook on C++20

New atomic types (2)

C++20 introduces an atomic specialization of std: :shared_ptr

#include <atomic>
#include <memory>

struct LargeObject {
char data[1000];
}s
std::atomic<std::shared_ptr<LargeObject>> object;

void readThreadSafe() {
auto objectPtr = object.load();
if (objectPtr)
objectPtr->data; /*x do something with objectPtr->data */

void replaceThreadSafe(std::shared_ptr<LargeObject> newObject) {
object.store(std: :move(newObject));

}

https://en.cppreference.com/w/cpp/atomic/atomic

Miscellaneous Outlook on C++20

More Changes

C++20 has many more small and large changes, such as:

® std::source_location: Stores a location in the source code.
std: :source_location::current() can be used to get the location of
the current line

® <numbers> header: Contains mathematical constants like
std: :numbers: :pi and std: :numbers::e

® consteval and constinit: Behave like a “mandatory” constexpr
® More functions and classes in the standard library now are constexpr

® Some restrictions of lambdas were removed, e.g. you can now capture
structural bindings

® Non-type-template arguments can now have a user-defined type

® |t is now specified that all integer types must use two's complement

	Miscellaneous
	Tricks on x86-64
	Vectorization
	Outlook on C++20

