
1

Data Processing on Modern Hardware

Jana Giceva

Lecture 4: In memory Joins



After plain select queries, let us now look at join queries:

We want to ignore result materialization for now, thus only count the result tuples.

Furthermore, we assume:

 No exploitable order

 No exploitable indices (input might be an intermediate result), and

 An equality join predicate (as above).

 No prior knowledge about key distribution

In-memory joins

2

SELECT COUNT(*)

FROM orders, lineitem

WHERE o_orderkey = l_orderkey



1970s – sorting

1980s – hashing

1990s – equivalent

2000s – hashing

2010s – hashing 

2020s – ???

History of join processing: hashing vs. sorting

3src: Andy Pavlo (Advanced Databases) CMU



Hash Join is a good match for the equi-join example earlier

To compute 𝑅 𝑆,

 1. Build a hash table on the outer join relation 𝑅

 2. Scan the inner relation 𝑆, and probe into the hash table for each tuple 𝑠 ∈ 𝑆.

Hash Join

4

1 function: hash_join(𝑅, 𝑆)
// Build phase

2 for each tuple 𝑟 ∈ 𝑅 do

insert 𝑟 into hash table 𝐻
// Join Phase

4 for each tuple 𝑠 ∈ 𝑆 do

5   probe 𝐻 and append matching tuples to result

𝜋

𝑅 𝑆

R.id = S.id



Hash Join

5

𝑏1

𝑏2

𝑏𝑘

ℎ ℎ

𝑅
𝑆

s
c
a

n
 

s
c
a

n
 

.
.
.

.
.
.

.
.
.

1. build 2. probe

hash table

Complexity O(N)

Build is easy to parallelize

Probe needs no synchronization



Parallel Hash Join

6

𝑏1

𝑏2

𝑏𝑘

ℎ
ℎ𝑅

𝑆
.
.
.

.
.
.

.
.
.

1. build 2. probe

ℎ

.
.
.

ℎ

.
.
.

shared 

hash table

Key characteristics:

 Split the input relations into chunks

 Build:

 Each thread operates on its own input chunk

and writes to a shared hash table

 The shared hash table is protected using locks

 Usually very low contention

 Probe:

 Multiple readers – no synchronization needed

 Each thread probes the hash table for its own 

chunk’s tuples

 Passes on the matched tuples



Algorithm design goals for modern hardware:

 Minimize synchronization

 avoid taking latches during execution

 Minimize memory access cost

 ensure that data is local to worker thread

 reuse data while it is still in the cache

The naïve parallel hash join has a lot of random accesses 

 For large relations, every hash table access will likely be a cache miss

 The better the hash function, the more random the distribution of keys

Cost per tuple (build phase):

 34 assembly instructions

 1.5 cache misses                                

 3.3 TLB misses

(Parallel) Hash Joins on Modern Hardware

7

hash join is severely latency bound



 Hardware-conscious:

 Best performance can be achieved by fine-tuning to the underlying architecture: 

Cache hierarchy, translation lookaside buffer (TLB), non-uniform memory accesses (NUMA), etc.

 Hardware-oblivious:

 Algorithms can be efficient while remaining hardware oblivious because modern hardware hides 

the performance loss inherent in the multi-layer memory hierarchy with hyper-threads

 Easily portable to different hardware

 More robust to data-skew

Hardware-oblivious vs conscious dilemma 

8



Quick recap of virtual memory

and address translation

9



 Request is virtual address (VA), want physical address (PA)

 Use look-up table that we call page table (PT)

Memory translation

10

CPU MMU
1) VA

4) PA

5) Data

Cache / Memory

CPU Chip

2) PTEA

3) PTE

VA      = Virtual Address

PA      = Physical Address

PTEA  = Page Table Entry Address

PTE    = Page Table Entry

Data   = Content of memory stored 

at VA originally requested by CPU

1    - Processor sends virtual address to MMU

2,3 - MMU fetches PTE from page table in cache/memory

4    - MMU sends physical address to cache/memory requesting data

5    - Cache/memory sends data to processor



Translation Lookaside Buffer (TLB)

11

CPU MMU
1) VA

4) PA

5) Data

Cache / MemoryCPU Chip

TLB

VPN

VPN

VPN

PTE

PTE

PTE

→
→

→

TLB

A TLB hit eliminates a memory access!

2) 

VPN

3)

PTE



TLB Miss

12

CPU MMU
1) VA

3) PTEA

4) PTE

5) PA

6) Data

Cache / MemoryCPU Chip

TLB

VPN

VPN

VPN

PTE

PTE

PTE

→
→

→

TLB
A TLB miss incurs additional memory 

access (the PTE)

2) 

VPN



Intel Core i7 Memory System

13

The standard page size on x86 is 4kB, 

but larger sizes 2MB and 1GB are also 

available (i.e., huge pages).

Two level TLB caches

• Separate L1 for instruction and data

• Unified L2 for both



Back to hash joins

14



Factors that affect cache misses in a DBMS:

 Cache + TLB capacity

 Locality (temporal + spatial)

Key approaches to use:

 Sequential (strided) access (e.g., table scan):

 Cluster and align data to a cache line

 Execute more operations per cache line

 Random access (e.g., index look-ups):

 Pre-fetch data from memory manually 

 Use the blocking technique – partition data to fit in cache

 Watch-out for the TLB cache

src: Johannes Gehrke (Main-memory database systems) http://www.cs.cornell.edu/courses/cs632/2001sp/slides/Main-memory%20database%20systems.ppt

Improving the cache behavior

15



 Chained hashing:

 Maintain a linked list of buckets for each slot in the hash table

 Resolve collisions by placing all elements with the same hash key 

into the same bucket

 Open addressing:

 Use a single giant table of slobs

 linear probing (LP) – resolve collisions by linearly searching 

for the next free slot in the table

 other probe sequences (e.g., quadratic, robin-hood, hopscotch, etc.)

 Different trade-offs:

 Locality: pointer chasing vs. sequential access

 Chaining better performance during build phase

 LP better throughput during probe phase

 Robustness: on high load factors, LP suffers from primary clustering

Hashing schemes

16

10

11

21

12

22

32

17

27

37

47



Hash Table implementation

18

 Even for a simple chain hashing scheme, there are 

many things to consider.

 Naïve implementation:

 Hash table is an array of head pointers, each of 

which points to the head of a linked bucket chain.

 Each bucket is implemented as a 48-byte record: 

 free points to the next available tuple space, 

 next pointer leads to the next overflow buffer

 the bucket holds two 16-byte tuples.

 Since it is a shared hash table, latches are 

needed for synchronization. Implemented as a 

separate latch array.

 3 separate cache lines

Three steps to insert a new entry:

1. The latch must be locked from the latch array

2. The head must be read from the pointer array

3. The head pointer should be dereferenced to find 

the hash bucket

Each step could be a cache miss!

src: Blanas et al. Design and evaluation of main memory hash join algorithms for multi-core CPUs SIGMOD 2011



Hash Table implementation

19

 An alternative chain hashing scheme:

 The main hash table is a contiguous array of buckets.

 Header contains 1-byte for latch, and a 7-byte counter 

indicating the number of tuples in the bucket. 

 Contains two 16-byte tuples.

 For overflow, additional buckets are allocated outside 

the main hash table, referenced by the next pointer.

 Fits in 1 cache line

Contiguous memory block can reduce the 

number of cache misses significantly.

src: Balkesen et al. Main-memory Hash Joins on Modern Processor Architectures ICDE 2014



Performance impact of HT implementation

20

Naïve HT implementation

Alternative HT implementation

Build 

src: Balkesen et al. Main-memory Hash Joins on Modern Processor Architectures ICDE 2014



The hash join has inherently a lot of random accesses, which is a problem when the data

is large and does not fit in the cache.

There are two main options one could take:

 Pre-fetching

 Recall assignment 1  the hardware pre-fetcher cannot help with random accesses

 But: a software pre-fetcher can issue memory requests ahead of time and hide latencies [1]

 Partitioning

 Recall blocked matrix multiplication example 

 Split the input relations into cache-resident buffers by hashing the tuples’ join key(s) [2]

 Insight: the cost of partitioning is often less than the overhead of cache misses for build and probe

Improving cache behavior for the hash join

21

[1] Chen et al. Improving Hash Join Performance through Prefetching. ICDE 2004

[2] Shatdal et al. Cache conscious algorithms for relational query processing. VLDB 1994



 To hide cache miss latencies in hash joins, one can use software pre-fetching.

 Modify the source code using special instructions (compiler intrinsic) on any pointer in the program.

__mm_prefetch(void *p, enum __mm_hint h);

 Group pre-fetching

 Modified forms of compiler transformations called strip mining and loop distributions

 Restructure the code so that hash probe accesses resulting from groups of G 

consecutive probe tuples can be pipelined

 Software pipelining

 Generate efficient schedules for loops by overlapping the execution of operations from different

iterations of the loop.

 Assume there are no inter-tuple dependencies (for simplicity)

Case 1: Software based prefetching

22
src: Chen et al. Improving Hash Join Performance through Prefetching. ICDE 2004



Group pre-fetching (example)

23

for i=0 to N-1 do

code 0;

visit (𝑚𝑖
1
); code 1;

visit (𝑚𝑖
2
); code 2;

...   

visit (𝑚𝑖
𝑘
); code k;

end for

for j=0 to N-1 step G do

for i=j to j+G-1 do

code 0;

prefetch (𝑚𝑖
1
);

end for

for i=j to j+G-1 do

visit (𝑚𝑖
1
); code 1;

prefetch (𝑚𝑖
2
);

end for

for i=j to j+G-1 do

visit (𝑚𝑖
2
); code 2;

prefetch (𝑚𝑖
3
);

end for 

...   

for i=j to j+G-1 do

visit (𝑚𝑖
𝑘
); code k;

end for

end for

src: Chen et al. Improving Hash Join Performance through Prefetching. ICDE 2004



Software-pipelined pre-fetching

24

for i=0 to N-1 do

code 0;

visit (𝑚𝑖
1
); code 1;

visit (𝑚𝑖
2
); code 2;

...   

visit (𝑚𝑖
𝑘
); code k;

end for

for j=0 to N-kD-1 do

i=j+kD;

code 0 for element i;

prefetch(𝑚𝑖
1
);

i=j+(k-1)D;

visit (𝑚𝑖
1
); code 1 for element i;

prefetch(𝑚𝑖
2
);

i=j+(k-2)D;

visit(𝑚𝑖
2
); code 2 for element i;

prefetch(𝑚𝑖
3);

...

i=j;

visit(𝑚𝑖
𝑘
); code k for element i;

end for

src: Chen et al. Improving Hash Join Performance through Prefetching. ICDE 2004

D is the prefetching distance.



Software-pipelined:

 Can always hide miss latencies

 But, has a larger book-keeping overhead and larger maintained state

Group:

 Easier to implement

 Not all cache misses can be hidden (esp. when code 0 is empty)

 Can be amortized with large group of elements

Group vs software-pipelined pre-fetching

25src: Chen et al. Improving Hash Join Performance through Prefetching. ICDE 2004



Impact of prefetching on join performance

26

N
o
rm

a
liz

e
d

 e
x
e

c
u

ti
o

n
 t
im

e
 

baseline   gp_pref sp_pref

d-cache stalls

TLB stalls

other stalls

busy

src: Chen et al. Improving Hash Join Performance through Prefetching. ICDE 2004

Big reduction of d-cache stalls

Eliminate TLB stalls



 Recall the blocking matrix multiplication example?

 In blocking, an algorithm is restructured to reuse chunks of data that fit in the cache.

 In partitioning, the layout of the input data is reorganized to make maximum use of the cache

 Make sure that partitions fit in the cache

Case 2: partitioning 

27

for (i=0; i<M; i++)

for (j=0; j<N, j++)

process(a[i][j]);

for (b=0; b<N/B; b++)

for (i=0; i<M, i++)

for (j=b+B; j<(b+1)*B; j++) 

process(a[i][j]);

quicksort(relation[N])

partition relation into blocks < cache size

for each partition r

quicksort(relation[PARTITIONSIZE]);

merge all partitions

src: Nyberg et al. AlphaSort: A RISC Machine Sort. SIGMOD 1994



Partitioned Hash Join

28

ℎ1 ℎ1

𝑅
𝑆

s
c
a

n
 

s
c
a

n
 

.
.
.

.
.
.

1. partition 2. build

𝑟1

𝑟2

𝑟3

𝑟4

ℎ2

ℎ2

.
.
.

𝑠1

𝑠2

𝑠3

𝑠4

ℎ2

ℎ2

one hash table

per partition

3. probe 1. partition

Cache-sized chunks

Parallelism: assign partitions to 

threads  no synchronization needed



 Build / Probe are now contained within the caches:

 From 34 down to 15/21 instructions per tuple (build/probe)

 From 1.5 down to 0.01 cache misses per tuple

 From 3.3 down to almost no TLB misses

Cache analysis of Partitioned Hash Joins

29

 Joining two relations with 8B key+payload

and 128M tuples (total size 977MB)

 Measured on 3 different machines

 Partitioning is now critical

 Many partitions are far apart

 Each one will reside on its own page

 Run out of TLB entries (100-500)

src: Balkesen et al. Main-memory Hash Joins on Modern Processor Architectures ICDE 2014

Nehalem    SandyBridge AMD



Partitioning is expensive beyond ~ 28 − 29 partitions

Cost of partitioning

30

for all input tuples 𝑡 do

ℎ ← ℎ𝑎𝑠ℎ(𝑡. 𝑘𝑒𝑦)

𝑜𝑢𝑡 𝑝𝑜𝑠 ℎ ← 𝑡
𝑝𝑜𝑠 ℎ ← 𝑝𝑜𝑠 ℎ + 1

end for

src: Jens Teubner Lecture: Data Processing on Modern Hardware. 

Due to TLB thrashing



Radix partitioning (basic)

31

// Build a histogram

for 𝑖 = 0 to 𝑁 − 1 do

++ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 ℎ(𝑖𝑛𝑝𝑢𝑡 𝑖 ) ;

// Calculate prefix-sum

𝑜𝑓𝑓𝑠𝑒𝑡 = 0;
for 𝑖 = 0 to 𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 − 1 do

𝑑𝑒𝑠𝑡 𝑖 = 𝑜𝑓𝑓𝑠𝑒𝑡;
𝑜𝑓𝑓𝑠𝑒𝑡 += ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[𝑖];

// Partition the data

for 𝑖 = 0 to 𝑁 − 1 do

𝑏𝑢𝑐𝑘𝑒𝑡𝑛𝑢𝑚 = ℎ(𝑖𝑛𝑝𝑢𝑡 𝑖 );
𝑜𝑢𝑡𝑝𝑢𝑡[𝑑𝑒𝑠𝑡[𝑏𝑢𝑐𝑘𝑒𝑡_𝑛𝑢𝑚]] = 𝑖𝑛𝑝𝑢𝑡[𝑖];
+ +𝑑𝑒𝑠𝑡[𝑏𝑢𝑐𝑘𝑒𝑡_𝑛𝑢𝑚];

Partition a dataset into 2𝑅 partitions.

 In the first pass over the data, for each partition 

we count the entries that will be sent to it.

 From this histogram, we calculate the start index 

of each partition (i.e., prefix sum).

 The second pass over the data copies the 

entries to their designated partition.



It’s an art in itself and was studied extensively

 Single vs. multi-pass partitioning

 Software Write-Combine Buffers

 Non-temporal Streaming

 Using huge page tables

 NUMA awareness  covered in two weeks

Optimizing the radix sort - partitioning

32

[1] Wassenberg and Sanders. Engineeringa multi-core radix-sort. Euro-Par 2011

[2] Polychroniou and Ross. A comprehensive study of main-memory partitioning and its application to large-scale comparison  

and radix-sort. SIGMOD 2014

[3] Schuhknecht et al. On the Surprising Difficulty of Simple Things: the Case of Radix Partitioning VLDB 2015



 Creating too many partitions can easily thrash the TLB cache.

 Thus, do a multi-pass partitioning, and limit the fan-out of each partitioning pass

Multi-pass partitioning

33

ℎ1.1
ℎ1.1

𝑅
𝑆

s
c
a

n
 

s
c
a

n
 

.
.
.

.
.
.

1. partition 2. build

𝑟1

𝑟2

𝑟3

𝑟4

ℎ2

ℎ2

.
.
.

𝑠1

𝑠2

𝑠3

𝑠4

ℎ2

ℎ2

one hash table

per partition

3. probe 1. partition

ℎ1.2

ℎ1.2

pass 1 pass 2

ℎ1.2

ℎ1.2

pass 2 pass 1



Multi-pass partitioning

34



 TLB miss only every bufsize tuples

 Choose bufsize to match cache line size

Software managed buffers

35

for all input tuples 𝑡 do

ℎ ← ℎ𝑎𝑠ℎ(𝑡. 𝑘𝑒𝑦)

copy 𝑡 to 𝑜𝑢𝑡 𝑝𝑜𝑠 ℎ
𝑝𝑜𝑠 ℎ ← 𝑝𝑜𝑠 ℎ + 1

end for

for all input tuples 𝑡 do

ℎ ← ℎ𝑎𝑠ℎ(𝑡. 𝑘𝑒𝑦)
𝑏𝑢𝑓 ℎ 𝑝𝑜𝑠 ℎ mod 𝑏𝑢𝑓𝑠𝑖𝑧𝑒 ← 𝑡
if 𝑝𝑜𝑠 ℎ mod 𝑏𝑢𝑓𝑠𝑖𝑧𝑒 = 0 then
copy 𝑏𝑢𝑓[ℎ] to 𝑜𝑢𝑡[𝑝𝑜𝑠 ℎ − 𝑏𝑢𝑓𝑠𝑖𝑧]

end if

𝑝𝑜𝑠 ℎ ← 𝑝𝑜𝑠 ℎ + 1
end for

Naïve partitioning Software managed buffers

Memory access

Memory access



Software managed buffers – suitable bufsize

36src: Schuhknecht et al. On the Surprising Difficulty of Simple Things: the Case of Radix Partitioning VLDB 2015



Key idea: keep the working set warm in cache, and issue memory writes that bypass the cache

Method: non-temporal streaming stores 

__mm256_stream_si256(__m256i* mem, __m256i a)

 This AVX intrinsic writes 4 buffered 64-bit entries to a partition at once (i.e., half a cache line). 

 The processor tries to fill a cache line in its own write-combine buffer before writing to memory

 As soon as it is filled, it is flushed out without reading the corresponding cache-line from memory. 

 Caveat: the memory address must be aligned to 32 Bytes = 256 bits  

 For AVX 512, we can fill a full cache line per call 

Non-temporal Streaming Stores

38



Partitioning performance

41src: Schuhknecht et al. On the Surprising Difficulty of Simple Things: the Case of Radix Partitioning VLDB 2015



Results

44src: Schuh et al. An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory SIGMOD 2016

radix join (basic)

no partitioned hash join with prefetching

radix join (with chain hashing) with optimizations

radix join (with linear hashing) with optimizations

radix join (with LH) with optimizations and NUMA awareness

Lighter shade is 

with huge pages



So far, join on narrow tuples

45

 If optimized well, with prefetching or SWWCB and 

streaming instructions, the join quickly 

becomes memory bound

 A simple analytical model can tell us when to use 

which type of join (no-partitioning, or radix-join).

src: Makreshanski et al. Many-query join: efficient shared execution of relational joins on modern hardware VLDBJ 2018



 Various papers cross-referenced in the slides

 Wassenberg and Sanders. Engineeringa multi-core radix-sort. Euro-Par 2011

 Chen et al. Improving Hash Join Performance through Prefetching. ICDE 2004

 Shatdal et al. Cache conscious algorithms for relational query processing. VLDB 1994

 Blanas et al. Design and evaluation of main memory hash join algorithms for multi-core CPUs SIGMOD 2011

 Balkesen et al. Main-memory Hash Joins on Modern Processor Architectures ICDE 2014

 Polychroniou and Ross. A comprehensive study of main-memory partitioning and its application to large-scale comparison and radix-sort. SIGMOD 2014

 Schuhknecht et al. On the Surprising Difficulty of Simple Things: the Case of Radix Partitioning VLDB 2015

 Schuh et al. An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory SIGMOD 2016

 Makreshanski et al. Many-query join: efficient shared execution of relational joins on modern hardware VLDBJ 2018

 Lecture: Database Systems on Modern CPU Architectures by Prof. Thomas Neumann (TUM)

 Lecture: Data Processing on Modern Hardware by Prof. Jens Teubner (TU Dortmund, past ETH)

 Lecture: Advanced Databases by Prof. Andy Pavlo (CMU)

 Book: Computer Systems: A Programmer’s Perspective 3rd edition by Bryant and O’Hallaron

 Book: What every programmer should know about memory by Ulrich Drepper

 Intel manuals for software write combining, streaming instructions, software-based prefetching

 https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

 Check out the code from Cagri Balkesen for high performance radix join implementation:

 https://www.systems.ethz.ch/node/334

References

47

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.systems.ethz.ch/node/334


Appendix – Address Translation 

48



Address Translation

49

CPU MMU

0:

1:

2:

3:

4:

5:

6:

7:

M-1:

.
.
.

Data (int/float)

Main memory

Physical address

(PA)

0x40x4100

Virtual address

(VA)

Memory Management Unit

How do we perform the virtual  physical address translation?

CPU Chip



1    - Processor sends virtual address to MMU

2,3 - MMU fetches PTE from page table in cache/memory

4    - MMU sends physical address to cache/memory requesting data

5    - Cache/memory sends data to processor

 Request is virtual address (VA), want physical address (PA)

 Use look-up table that we call page table (PT)

Address Translation: Page Hit

50

CPU MMU
1) VA

2) PTEA

3) PTE

4) PA

5) Data

VA      = Virtual Address

PA      = Physical Address

PTEA  = Page Table Entry Address

PTE    = Page Table Entry

Data   = Content of memory stored 

at VA originally requested by CPU

Cache / Memory

CPU Chip



Address Translation: Page Fault

51

CPU MMU
1) VA

2) PTEA

3) PTE

4) PA

5) Data

Cache /

Memory
CPU Chip

1    - Processor sends virtual address to MMU

2,3 - MMU fetches PTE from page table in cache/memory

4    - Page is not there, MMU triggers page fault exception

5 - Handler identifies victim (and, if dirty, pages it out to disk)

6 - Handler pages in new page and updates PTE in memory

7 - Handler returns to original process, restarting faulting instructions

Disk

6) New Page

5) Victim Page

Page fault handler
4) Exception



Address Translation

52

TLB

Lookup

Check the 

Page Table

Protection

Check

Protection 

Fault

Update

TLB

Page Fault

(OS loads page)

Find in Disk Find in Mem SIGSEGV

Physical

Address

Check cache

Virtual Address

TLB miss TLB hit

PTE

PTE

Access

Denied

Access

Permitted

Page not

in Memory

Page in

Memory


