
1

Data Processing on Modern Hardware

Jana Giceva

Lecture 7: Multicore CPUs

Parallelization and Synchronization

 To make the most out of

multicore processors we can:

 Allow multiple different tasks

to be running concurrently →

concurrency

(multiprogramming)

 Parallelize the implementation

of a single task →

parallelism

(parallel programming)

The rise of the multi-core machines

Parallelism

 Work partitioning (expressing parallelism)

 Work must be split in parallel tasks

 Also known as domain decomposition

 Scheduling

 Tasks must be mapped into execution contexts

 Task granularity

 How much work a task performs?

 Too little → large overhead

 Too much → difficult for efficient load balancing

 Correctness

 Order of reads and writes is non-deterministic

 Synchronization is required to enforce the order

Basic concepts

partitioning

work

 An overloaded concept:

 e.g., how well a system reacts to increased load, e.g., clients in a server

 Speed-up – how well does the RT reduces for the same problem size by adding resources (e.g., cores).

 Speed up for problem size 𝑋 with 𝑁 resources: 𝑆𝑝𝑒𝑒𝑑𝑈𝑝(𝑁) = 𝑅𝑇(1, 𝑋)/𝑅𝑇(𝑁, 𝑋)

 Ideal: linear function

 Scale-up – how well the system deals with larger load (problem size) by adding resources

 Scale up for 𝑁 × larger problem by adding 𝑁 × resources: 𝑆𝑐𝑎𝑙𝑒𝑈𝑝(𝑁) = 𝑅𝑇(1, 𝑋)/𝑅𝑇(𝑁,𝑁𝑋)

 Ideal: constant function

 Scale-out – how well the system deals with larger load (problem size) by adding more servers / machines

 Scale out for 𝑁 × larger problem by executing on 𝑁 × machines: 𝑆𝑐𝑎𝑙𝑒𝑂𝑢𝑡(𝑁) = 𝑇𝑃(1, 𝑥)/𝑇𝑃(𝑁,𝑁𝑋)

 Ideal: constant function (should behave like Scale-up)

Scalability

5

 Sequential execution time: 𝑇1
 Execution time 𝑇𝑝 on 𝑝 CPUs

 (parallel) speed-up 𝑺𝒑 on 𝒑 CPUs: 𝑆𝑝 =
𝑇1

𝑇𝑝

 𝑆𝑝 = 𝑝 : linear speed-up

 𝑆𝑝 < 𝑝 : sub-linear speed-up / performance loss

 𝑆𝑝 > 𝑝 : super-linear speed-up / usually poor baseline

 Why 𝑺𝒑 < 𝒑 ?

 Programs may not contain enough parallelism

 Some parts may be inherently sequential

 Overheads due to parallelization

 Typically associated with synchronization

 Architectural limitations

 Memory contention (memory bound)

Our focus: speed-up

6

Suppose we parallelize an algorithm using 𝑛 cores and 𝑝 is the proportion of the task that can be

parallelized (1 – 𝑝 cannot be parallelized)

 The speed up of the algorithm is
1

1−𝑝 +
𝑝

𝑛

 For infinite parallelism, the speed-up is
1

(1−𝑝)

 For example, if 90% of the work is parallelized,

the maximum speed up is 10

 Ensure that every phase of one’s algorithm that

depends on the input data size is parallelized.

Amdahl’s Law

im
g

s
rc

:
W

ik
ip

e
d
ia

 Non-scalable algorithm

 Rethink the algorithm

 e.g., searching a tree: which one is easier to parallelize BFS or DFS?

 Load imbalance

 Break work into smaller tasks, dynamically schedule these between threads

 Task overhead

 Set a minimum per-thread task size (not too small, not too large)

Pitfalls in parallel code

8

In database systems:

 Inter-query parallelism (Concurrency, Multi-programming)

 Requires a sufficient number of co-running queries.

 May work well for OLTP workloads

 Characterized by many simple queries

 Data analytics / OLAP are resource-heavy

 Will not help an individual query

 Intra-query parallelism

 Intra-query parallelism is a must

 Should still allow a few co-running queries.

Parallelize database workloads

9

 Processes, kernel- and user-level threads and fibers

 Process: an instance of a program that is isolated from other processes on the machine.

 Has its own private section of the machine’s memory.

 A process abstraction is a virtual computer. Scheduled by the kernel.

 Thread: a locus of control inside a running program.

 A thread abstraction is a virtual processor. Scheduled by the kernel.

 Threads share all the memory in the process.

 User-level threads: act like threads, but implemented in user-space.

 Can be scheduled preemptively or cooperatively. Invisible to the kernel.

 Fibers: light-weight thread of execution that uses co-operative multi-tasking.

 Fibers yield themselves to run another fiber while executing.

System constructs for concurrency and parallelism

10

 OS Process per DBMS worker

 Used by early DBMS implementations

 DBMS workers are mapped directly onto OS processes

 OS Thread per DBMS worker

 Single multi-threaded processes hosts all DBMS worker activity

 A dispatcher thread listens for new connections. Each connection is allocated a new thread.

 DBMS Threads

 Lightweight user-space threading constructs (replacing the need for OS threads)

 Fast task switching at the expense of replicating a good deal of the OS logic in the DBMS

 Task-switching, thread state management, scheduling, etc.

 Are co-routines (fibers) next?

Process model in databases

11

In database systems:

 Inter-query parallelism (Concurrency, Multi-programming)

 Requires a sufficient number of co-running queries.

 May work well for OLTP workloads

 Characterized by many simple queries

 Data analytics / OLAP are resource-heavy

 Will not help an individual query

 Intra-query parallelism

 Intra-query parallelism is a must

 Should still allow a few co-running queries.

Parallelize database workloads

12

Parallelization strategies for intra-query parallelism:

 Pipeline parallelism?

 Data partitioning / parallel operator implementation?

Parallelization strategies

13

Goal: Parallelize the query engine in a clean, uniform way.

Volcano's Solution: encapsulate the parallelism in a query operator of its own, not in the QP infrastructure.

Overview: kinds of intra-query parallelism available:

 pipeline

 partition, with two subcases:

 intra-operator parallelism (e.g. parallel hash join, or parallel sort)

 inter-operator parallelism -- bushy trees

We want to enable all -- including setup, teardown, and runtime logic -- in a clean encapsulated way.

The exchange operator:

 an operator you pop into any single-site dataflow graph as desired -- anonymous to the other operators.

Volcano-style parallelism

14
src: Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994

 Plan-driven approach:

 Optimizer determines at compile time the degree of parallelism

 Instantiates one query operator plan for each thread

 Connects these with exchange operators, which encapsulate

parallelism and manage threads

 Elegant model which is used by many systems

Volcano-style parallelism

15
src: Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994

 Positive aspects:

 Operators are largely oblivious to parallelism

 Drawbacks:

 Static work partitioning can cause load imbalance

 Degree of parallelism cannot be easily change mid-query

 Potential overhead:

 Thread over-subscription causes context switching

 Exchange operators create additional copies of the tuples

Volcano-style parallelism

16
src: Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994

Parallelism in Modern DBMSs today

17

 Query coordinator manages the parallel execution

 Obtains the number of parallel servers

 Determines granularity of partitioning and load-distribution

 Parallelism within and between operators

 Pipeline with depth 2 (producer – consumer pair)

 e.g., parallel scan and group-by

uses 8 servers in total.

 DOP (degree of parallelism) – the

number of parallel execution servers

associated with a single operator

 Can be chosen manually or automatic

 Adaptive means it can reduce the DOP

as the load in the system increases

Inter-operator parallelism and dynamic scheduling

src: https://docs.oracle.com/cd/E11882_01/server.112/e25523/parallel002.htm

 Use the task queuing model that decomposes

the execution into parallel tasks, each executing

a fraction of the total work

 The runtime system can then dynamically schedule

the tasks on different hardware threads 𝑇.

 General guidelines:

 Create more tasks than there are threads

 If a task’s input size exceeds a threshold (e.g., due to skew):

 Further split it up or if not possible put it aside and handle it afterwards

 Ensure to have good load-balancing among the hardware threads.

 More details for the specific stages of the join in

Sort vs Hash Revisited: Fast Join Implementations on Modern Multicore CPUs by Kim et al. (VLDB 2009)

Parallelizing the radix join

18

Impact of task granularity on parallel operators

19

 Different stages in radix join:

 1 – 2: compute local histogram for R and S

 3 – 4: partitioning passes 1 and 2

 5: join phase (partition-wise build and probe)

 Evaluate the effect of task granularity and queuing on

the performance of the radix join (zipf 1.5)

 Left – simple task queuing

 Right – task decomposition for large part/join tasks

idle time

busy time

 All threads do useful work in the beginning of each

execution stage (busy time with different gray shades)

 Simple task queuing leads to poor load-balancing and

threads need to wait on barriers → 25% perf. reduction

 With fine-grained task decomposition, we can identify

the large tasks and break them down for good load

balancing among all the working threads.

s
rc

:
B

a
lk

e
s
e

n
e

t
a

l.
 M

a
in

 M
e

m
o

ry
 H

a
s
h

 J
o

in
s
 o

n
 M

u
lt
i-

c
o

re

C
P

U
s
:
T

u
n

in
g

 t
o

 t
h

e
 U

n
d

e
ry

in
g

H
a
rd

w
a

re
.

IC
D

E
 2

0
1

3

Lessons learned:

 Use fine-grained partitioning

 Increased scheduling overhead seems bearable

 Assign partitions / tasks dynamically to processors

 Make load balancing easier

 How to incorporate that at an engine level?

 Morsel-driven parallelism (as implemented in HyPer)

Data partitioning

20

 Example of user-level task-based parallelism

as framework in database systems.

 Break input data into

constant-sized work units (“morsels”)

 Dispatcher assigns morsels and a pipeline

(of operators) to worker threads (scheduling)

 Number of worker threads = number of

hardware threads

 Operators are designed for parallel execution

Morsel-driven query execution

21
src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

 Each pipeline is parallelized individually using all threads

Query pipeline parallelization

22
src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

 Each pipeline is parallelized individually using all threads

Query pipeline parallelization

23
src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

Concurrency and Synchronization

24

Databases are often faced with highly concurrent workloads.

Good news:

 Exploit parallelism offered by the hardware (increasing number of cores)

Bad news:

 Increases relevance of synchronization mechanisms.

Concurrency in database workloads

Two levels of synchronization in databases:

 Synchronize on user data to guarantee transactional semantics:

 database terminology: locks

 Synchronize on database-internal data structures

 database terminology: latches

We will focus on the latter (latches), even when we refer to them as locks.

Synchronization in databases

26

 Cores have private caches

 CPU manages the shared memory and private caches using a cache coherency protocol

Cache coherency protocol ensures the consistency of data in caches

 Implements the two fundamental operations: load and store using:

 Snooping-based coherence

 All processors communicate to agree on the state

 Directory-based coherence

 A centralized directory holds information about state/whereabouts of data items

Cache coherence

27

 Most contemporary processors use the MESI cache coherency protocol (or a variant)

 MESI protocol has the following states:

 Modified: cache line is only in current cache and has been modified

 Exclusive: cache line is only in current cache and has not been modified

 Shared: cache line is in multiple caches

 Invalid: cache line is unused

 Intel uses the MESIF protocol, with an additional Forward state

 Special shared state indicating a designated “responder”

Cache coherency protocol

28

 x86 provides a lock prefix that tells the hardware:

 Do not let anyone read / write the value until I am done with it

 Not the default case (because it is slow!)

 Compare-and-swap (CAS):

 lock cmpxchg

 Exchange:

 xchg (automatically locks the bus)

 Read-modify-write:

 lock add

 If the compiler (or you) also emit code using non-temporal stores, it must also emit sufficient fencing

to make the usage of non-temporal stores un-observable to callers/callees.

 _mm_mfence(), _mm_lfence(), _mm_sfence()

Atomics

29

There are different synchronization modes :

 Pessimistic locking

 Always take an (exclusive) lock to access/modify data in the critical section

 Optimistic locking

 Validate whether the data read in the critical section is still valid upon completion

 Lock-free

 Threads never block for any reason when reading or writing

 Leverage HW-support for synchronization (atomics)

 Speculative locking (hardware transactional memory (HTM))

Locking techniques

30

 There are many different types of locks (we only look at a subset)

 Pessimistic:

 Exclusive lock

 Only one thread may hold the lock at a time

 Shared (Reader-Writer RW) lock

 Permit any number of readers to hold the lock concurrently

 Only allow a single writer to hold the lock

 Optimistic:

 Validate that the data read in the critical section has not changed

Types of Locks

31

 Validate that the data read in the critical section has not

changed in the meantime

 Good for frequently read data

 avoids the expensive atomic writes

required by pessimistic lock

 cache invalidation only needed on writes

 Challenges:

 Use it when it is safe to fail and restart

 All operations must be restart-able w/o side-effects

 With too much write contention, could lead to starvation

Optimistic locking

32

void readOptimistically(Lambda& readCallback){

// Attempt to read optimistically
for(i in [1 : MAX_ATTEMPTS]){
preVersion = getVersion();
if(isLocked(preVersion())
continue;

readCallback();
postVersion = getVersion();
if(preVersion == postVersion)
return;

}

// Fallback to pessimistic locking
lockPessimistic();
readCallback();
unlock();

}

There are two strategies to implement (pessimistic) locking:

 Spinning (in user space) – e.g., spinlock

 Waiting thread repeatedly polls lock until it becomes free

 But, the thread burns CPU cycles while sleeping

 Cost two cache miss penalties (if implemented well)  150nsec

 Blocking (OS service) – e.g., mutex or user-space futex

 De-schedule the waiting thread until the lock becomes free

 Cost: two context switches (one to sleep, one to wake-up)  12-20usec

Lock (latch) implementation

33

 Most database workloads mostly read data (even OLTP workloads)

 Reading should be fast and scalable

 For tree-based data structures (e.g., indexes), we always need to traverse the top levels of the tree

 High contention on such hotspots – should be lockable with minimal overhead

 Latency is critical

 Avoid context switching as much as possible  cannot solely rely on OS-based locks

 Some fine-grain data like index nodes or hash buckets requires space efficient locks

 Standard mutex (std::mutex) can be as much as 40-80 bytes – double the size for an ART node

 Efficient contention handling

 Handle contention gracefully, without sacrificing the uncontended path

Requirements for latches in databases

34

Qualitative overview of locking modes

35

 Which locking mode is best for a certain type of workload?

 Workloads: read-only, read-mostly (big/small read-set), write-heavy, write-only

 Locking modes: pessimistic (exclusive, shared), optimistic

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

 There are many different types of locks (we only look at a subset)

 Pessimistic:

 Exclusive lock

 Only one thread may hold the lock at a time

 Shared (Reader-Writer RW) lock

 Permit any number of readers to hold the lock concurrently

 Only allow a single writer to hold the lock

 Optimistic:

 Validate that the data read in the critical section has not changed

 Hybrid:

 Extend a shared lock with support for optimistic locking

Types of Locks

36

Hybrid locking

37

Class HybridLock {
RWMutex rwLock;
std::atomic<uint64_t> version;

public:
// simply call rwLock
void lockShared(); {rwLock.lockShared();}
void unlockShared(); {rwLock.unlockShared();}
void lockExclusive(); {rwLock.lockExclusive();}

// always increment the version before
// unlocking to avoid races!
void unlockExclusive() {
++version; rwLock.unlockExclusive():}

bool tryReadOptimistically(Lambda& readCallback) {
if(rwLock.isLockedExclusive())
return false;

auto preVersion = version.load();
// execute read callback
readCallback();
// was locked meanwhile?
if(rwLock.isLockedExclusive())
return false;

// version still the same
return preVersion == version.load();

}

void readOptimisticIfPossible(Lambda& readCallback) {
if(!tryReadOptimistically(readCallback)) {
// fallback to pessimistic locking
lockShared();
readCallback();
unlockShared();

}
}

};

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

Evaluating different locks on TPC-C

38

 Implemented a set of different locks

in the HyPer database

 Evaluate their performance using

the TPC-C benchmark

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

 The number of tuples protected by the

lock can have a big impact on the

system’s performance.

 For point accesses like updates and

key look-ups, the granularity sets the

number of concurrent accesses.

 Fine granularity is good for

write-heavy workloads

 Coarse granularity is better for

read-heavy workloads

 e.g., no need to acquire a lock for

every tuple during a scan

Granularity of locking

39
src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

 How well do different contention handling

strategies behave?

 Spinning

 Naïve (test-and-set)

 Test-test-and-set (with back-off)

 Local spinning

 Ticket-lock (with back-off)

 Blocking

 std:: mutex

 ParkingLot

 Each thread parks itself in a global

hashtable (parking lot) until the callback

condition is satisfied.

Evaluate contention handling strategies

40
src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

Efficient implementation of

concurrent data-structures

41

 Operations: insert(key), remove(key), contains(key)

 Keys are stored in a (single-)linked list, sorted by key

 head and tail are always there (“sentinel” elements)

 Why atomics like CAS is sometimes not enough?

 Thread A: remove(7)

 Thread B: insert(9)

Concurrent list-based set

42

-∞ 7 42 ∞

head tail

 Use a single lock to protect the entire data structure

 Positive:

 Very easy to implement

 Negative:

 Does not scale at all

Coarse-grained locking

43

-∞ 7 42 ∞

head tail

 Fine-grained locking

 Split object into independently synchronized components.

 Conflict when they access the same component at the same time.

 Optimistic synchronization

 Search without locking.

 If you find it, lock and check. If OK, we are done. If not, start over (can be expensive).

 Lazy synchronization

 Postpone the hard work

 Removing components: logical removal (mark to be deleted), physical removal (do what’s needed).

 Lock-free synchronization

 Don’t use locks at all. Disadvantages: complex and often with high overhead

Approaches to make it more scalable

44

 Also called hand-over-hand locking or crabbing

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

Fine grained locking with lock coupling

45

-∞ 7 42 ∞

 Also called “hand-over-hand locking” or “crabbing”

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

Lock coupling

46

-∞ 7 42 ∞

 Also called “hand-over-hand locking” or “crabbing”

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

Lock coupling

47

-∞ 7 42 ∞

 Also called “hand-over-hand locking” or “crabbing”

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

 Positive:

 Easy to implement

 No restarts

 Negative:

 Better than coarse-grained lock (e.g., threads can traverse in parallel), but inefficient.

Lock coupling

48

-∞ 7 42 ∞

 Trust, but verify

 Traverse the list optimistically without taking any locks

Optimistic

49

-∞ 𝑎 𝑏 𝑑 𝑒

 Trust, but verify

 Traverse the list optimistically without taking any locks

 Lock 2 nodes (predecessor and current)

Optimistic

50

-∞ 𝑎 𝑏 𝑑 𝑒

 Trust, but verify

 Traverse the list optimistically without taking any locks

 Lock 2 nodes (predecessor and current)

 Validate: traverse the list again and check that predecessor is still reachable and points to current

 If validation fails, unlock and restart

Optimistic

51

-∞ 𝑎 𝑏 𝑑 𝑒

𝑐

 Trust, but verify

 Traverse the list optimistically without taking any locks

 Lock 2 nodes (predecessor and current)

 Validate: traverse the list again and check that predecessor is still reachable and points to current

 If validation fails, unlock and restart

 Positive:

 Lock contention unlikely

 Negative:

 Must traverse list twice, method contains acquires a lock

Optimistic

52

-∞ 𝑎 𝑏 𝑑 𝑒

𝑐

 Associate lock with update counter

 Write:

 Acquire lock (exclude other writes)

 Increment counter when unlocking

 Do not acquire locks for nodes that are not modified (traverse like a reader)

 Read:

 Do not acquire locks, proceed optimistically

 Detect concurrent modifications through counters (and restart if necessary)

Optimistic lock coupling

53

 Associate lock with update counter

 Write:

 Acquire lock (exclude other writes)

 Increment counter when unlocking

 Do not acquire locks for nodes that are not modified (traverse like a reader)

 Read:

 Do not acquire locks, proceed optimistically

 Detect concurrent modifications through counters (and restart if necessary)

 Positive

 Easy to implement

 Scalable

 Negative

 has restarts

Optimistic lock coupling

54

Synchronization in ART tree

55

 Evaluate the different synchronization approaches (+ lazy (ROWEX), speculative (HTM) and Masstree)

on the Adaptive Radix Tree

src: Leis et al. The ART of Practical Synchronization. DaMoN 2016

 Various papers cross-referenced in the slides

 Lecture: Data Processing on Modern Hardware by Prof. Viktor Leis (Uni Jena, past TUM)

 Lecture: Data Processing on Modern Hardware by Prof. Jens Teubner (TU Dortmund, past ETH)

 Lecture: Supporting Parallelism in OS and Programming Languages by Dr. Kornilios Kourtis (IBM Research, past ETH)

 Book: Architecture of a Database System by Hellerstein, Stonebraker and Hamilton

 Chapters 2 and 3

 Book: The Art of Multiprocessor Programming by Herlihy and Shavit

 Chapters 7 and 8

 Book: Is Parallel Programming Hard, And, If So, What Can You Do About It? by McKenny

 Book: Computer Architecture: A Quantitative Approach by Hennessy and Patterson

 Chapter 5

References

56

