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The rise of the multi-core machines Tm
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Parallelism



Basic concepts

® Work partitioning (expressing parallelism)
— Work must be split in parallel tasks
— Also known as domain decomposition

® Scheduling
— Tasks must be mapped into execution contexts

® Task granularity
— How much work a task performs?
— Too little — large overhead
— Too much — difficult for efficient load balancing

® Correctness
— Order of reads and writes is non-deterministic

— Synchronization is required to enforce the order

partitioning
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Scalabllity Tm

® An overloaded concept:
— e.g., how well a system reacts to increased load, e.g., clients in a server

® Speed-up — how well does the RT reduces for the same problem size by adding resources (e.g., cores).
— Speed up for problem size X with N resources: SpeedUp(N) = RT(1,X)/RT(N, X)
— Ideal: linear function

® Scale-up — how well the system deals with larger load (problem size) by adding resources
— Scale up for N x larger problem by adding N x resources: ScaleUp(N) = RT(1,X)/RT(N,NX)
— Ideal: constant function

® Scale-out — how well the system deals with larger load (problem size) by adding more servers / machines
— Scale out for N x larger problem by executing on N x machines: ScaleOut(N) = TP(1,x)/TP(N,NX)
— Ideal: constant function (should behave like Scale-up)



Our focus: speed-up

® Sequential execution time: T,
" Execution time T,, on p CPUs

speedup

® (parallel) speed-up S, onp CPUs: S, = :—1

p
— §, = p : linear speed-up

— S, < p : sub-linear speed-up / performance loss

— S, > p : super-linear speed-up / usually poor baseline

"WhyS,<p?
— Programs may not contain enough parallelism
— Some parts may be inherently sequential
— Overheads due to parallelization
— Typically associated with synchronization
— Architectural limitations
— Memory contention (memory bound)

linear speedup

sub-linear speedup




Amdahl’'s Law

Suppose we parallelize an algorithm using n cores and p is the proportion of the task that can be

parallelized (1 - p cannot be parallelized)

. : :
The speed up of the algorithm is —(1_p)+%

® For infinite parallelism, the speed-up is

1
(1-p)

® For example, if 90% of the work is parallelized,
the maximum speed up is 10

® Ensure that every phase of one’s algorithm that
depends on the input data size is parallelized.

Speedup
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Pitfalls in parallel code

® Non-scalable algorithm
— Rethink the algorithm
— e.g., searching a tree: which one is easier to parallelize BFS or DFS?

® Load imbalance
— Break work into smaller tasks, dynamically schedule these between threads

® Task overhead
— Set a minimum per-thread task size (not too small, not too large)



Parallelize database workloads

In database systems:

® Inter-query parallelism (Concurrency, Multi-programming)
— Requires a sufficient number of co-running queries.
— May work well for OLTP workloads
— Characterized by many simple queries
— Data analytics / OLAP are resource-heavy
— Will not help an individual query



System constructs for concurrency and parallelism

® Processes, kernel- and user-level threads and fibers

® Process: an instance of a program that is isolated from other processes on the machine.

— Has its own private section of the machine’s memory.
— A process abstraction is a virtual computer. Scheduled by the kernel.

® Thread: a locus of control inside a running program.
— Athread abstraction is a virtual processor. Scheduled by the kernel.
— Threads share all the memory in the process.

® User-level threads: act like threads, but implemented in user-space.
— Can be scheduled preemptively or cooperatively. Invisible to the kernel.

® Fibers: light-weight thread of execution that uses co-operative multi-tasking.
— Fibers yield themselves to run another fiber while executing.

10



Process model in databases Tm

® OS Process per DBMS worker
— Used by early DBMS implementations
— DBMS workers are mapped directly onto OS processes

® OS Thread per DBMS worker
— Single multi-threaded processes hosts all DBMS worker activity
— Adispatcher thread listens for new connections. Each connection is allocated a new thread.

® DBMS Threads
— Lightweight user-space threading constructs (replacing the need for OS threads)
— Fast task switching at the expense of replicating a good deal of the OS logic in the DBMS
— Task-switching, thread state management, scheduling, etc.

® Are co-routines (fibers) next?

11



Parallelize database workloads

In database systems:

" Intra-query parallelism
— Intra-query parallelism is a must
— Should still allow a few co-running queries.

12



Parallelization strategies

Parallelization strategies for intra-query parallelism:

® Pipeline parallelism?

® Data partitioning / parallel operator implementation?

13



Volcano-style parallelism TLTI

Goal: Parallelize the query engine in a clean, uniform way.
Volcano's Solution: encapsulate the parallelism in a query operator of its own, not in the QP infrastructure.

Overview: kinds of intra-query parallelism available:

® pipeline

® partition, with two subcases:
— intra-operator parallelism (e.qg. parallel hash join, or parallel sort)
— inter-operator parallelism -- bushy trees

We want to enable all -- including setup, teardown, and runtime logic -- in a clean encapsulated way.

The exchange operator:
® an operator you pop into any single-site dataflow graph as desired -- anonymous to the other operators.

src: Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994
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Volcano-style parallelism TLTI

® Plan-driven approach:
— Optimizer determines at compile time the degree of parallelism

Print

— Instantiates one query operator plan for each thread I
— Connects these with exchange operators, which encapsulate Exchange

parallelism and manage threads I

Join

® Elegant model which is used by many systems / \
Join Exchange
Exchange Exchange Scan
Scan Scan

src: Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994
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Volcano-style parallelism TLTI

® Positive aspects:
— Operators are largely oblivious to parallelism

® Drawbacks:
— Static work partitioning can cause load imbalance
— Degree of parallelism cannot be easily change mid-query
— Potential overhead:
— Thread over-subscription causes context switching
— Exchange operators create additional copies of the tuples

src: Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994
16



Parallelism in Modern DBMSs today Tm

® Query coordinator manages the parallel execution
— Obtains the number of parallel servers

— i i iti i -distri i Parallel execution Parallel execution
Determines granularity of partitioning and load-distribution § frakas cnec ¢ arakcl exeoull
ORDER BY table scan
operalion
® Parallelism within and between operators
o . . A-G
— Pipeline with depth 2 (producer — consumer pair) '\
— e.g., parallel scan and group-by employees Table
uses 8 servers in total. ] H-M -
User :
Process 4 C%ﬁfi?rtlmr
® DOP (degree of parallelism) — the “— ns Pu—
number of parallel execution servers S \
associated with a single operator from employees 7.7 /
. ORDER BY last name;
— Can be chosen manually or automatic
i i Intra- Inter- Intra-
— Adaptive means it can reduce the DOP Operaton  Operaion  Operation

. . alledi lleli lel
as the load in the system increases parallefiem  parallelsm  parallefsm

Inter-operator parallelism and dynamic scheduling

src: https://docs.oracle.com/cd/E11882_01/server.112/e25523/parallel002.htm
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Parallelizing the radix join TUT

one hash table
per partition

® Use the task queuing model that decomposes :

the execution into parallel tasks, each executing R D . m*hZ f hz* S D\

> 2 .

a fraction of the total work ! T 1/ [l f 2] “ h1 NE

® The runtime system can then dynamically schedule 1 \D 3 —. '
. shia” 4*"\ Thip
the tasks on different hardware threads T. \‘m+h2 ] hzef
- N/ -

pass 1 pass 2 pass 2 pass 1

[ S —

(D) partition ) build 3) probe (D) partition

® General guidelines:
— Create more tasks than there are threads
— If a task’s input size exceeds a threshold (e.g., due to skew):
— Further split it up or if not possible put it aside and handle it afterwards
— Ensure to have good load-balancing among the hardware threads.

® More details for the specific stages of the join in
Sort vs Hash Revisited: Fast Join Implementations on Modern Multicore CPUs by Kim et al. (VLDB 2009)
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Impact of task granularity on parallel operators

® Different stages in radix join:
— 1 - 2: compute local histogram for R and S
— 3 - 4: partitioning passes 1 and 2
— 5:join phase (partition-wise build and probe)

® Evaluate the effect of task granularity and queuing on
the performance of the radix join (zipf 1.5)
— Left — simple task queuing
— Right — task decomposition for large part/join tasks

time [billion cycles]

® All threads do useful work in the beginning of each
execution stage (busy time with different gray shades)

® Simple task queuing leads to poor load-balancing and
threads need to wait on barriers — 25% perf. reduction

® With fine-grained task decomposition, we can identify
the large tasks and break them down for good load
balancing among all the working threads.

E22 idle time
8+ B busy time

thread 1d

TUTI

src: Balkesen et al. Main Memory Hash Joins on Multi-core
CPUs: Tuning to the Underying Hardware. ICDE 2013
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Data partitioning

Lessons learned:

® Use fine-grained partitioning
— Increased scheduling overhead seems bearable
® Assign partitions / tasks dynamically to processors
— Make load balancing easier

® How to incorporate that at an engine level?
— Morsel-driven parallelism (as implemented in HyPer)

20



Morsel-driven query execution Tm

® Example of user-level task-based parallelism - HT(S)
as framework in database systems. 5 Tc A |8
Result P ‘_probe(sl.\ 168 — R
) . i ?G g S ..._store/ 33 |x ’probetlo) 8133 probe(lﬁ)A 7
® Break input data into yd 101y Nz S FEE
H H “ ” robe 7 ©
constant-sized work units (“morsels”) store - probe(27) IS5 T
I4
. . . . 23
® Dispatcher assigns morsels and a pipeline -
(of operators) to worker threads (scheduling)
Dispatcher
® Number of worker threads = number of

hardware threads
Figure 1: Idea of morsel-driven parallelism: R X4 S Xg T

® Operators are designed for parallel execution

src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014
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Query pipeline parallelization

® Each pipeline is parallelized individually using all threads

Build HT(T)

src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

Build HT(S)

/

g
I ¢
Pipe 2 '
l Pipe 2 Pipe 2
Scan s \
Scan s Scan§
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Query pipeline parallelization

® Each pipeline is parallelized individually using all threads

Probe HT(S)

Probe HT(S)
Probe HT(S)
Build HT(S)

Probe HT(S) o

o
Pipe 3

Pipe 3
g \ l Scan R
Pipe 3

Scan R

Pipe 3 l
l Scan R

Scan R

Build HT(T)

src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014
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Concurrency and Synchronization

24



Concurrency Iin database workloads

Databases are often faced with highly concurrent workloads.

Good news:
® Exploit parallelism offered by the hardware (increasing number of cores)

Bad news:
® Increases relevance of synchronization mechanisms.



Synchronization in databases

Two levels of synchronization in databases:

® Synchronize on user data to guarantee transactional semantics:
— database terminology: locks

® Synchronize on database-internal data structures
— database terminology: latches

We will focus on the latter (latches), even when we refer to them as locks.

26



Cache coherence

® Cores have private caches
® CPU manages the shared memory and private caches using a cache coherency protocol

Cache coherency protocol ensures the consistency of data in caches
® Implements the two fundamental operations: load and store using:

— Snooping-based coherence
— All processors communicate to agree on the state

— Directory-based coherence
— A centralized directory holds information about state/whereabouts of data items

27



Cache coherency protocol

® Most contemporary processors use the MESI cache coherency protocol (or a variant)

® MESI protocol has the following states:
— Modified: cache line is only in current cache and has been modified
— Exclusive: cache line is only in current cache and has not been modified
— Shared: cache line is in multiple caches
— Invalid: cache line is unused

® Intel uses the MESIF protocol, with an additional Forward state
— Special shared state indicating a designated “responder”

28



Atomics Tm

® x86 provides a lock prefix that tells the hardware:
— Do not let anyone read / write the value until | am done with it
— Not the default case (because it is slow!)

® Compare-and-swap (CAS):
— lock cmpxchg

® Exchange:
— xchg (automatically locks the bus)

® Read-modify-write:
— lock add

® If the compiler (or you) also emit code using non-temporal stores, it must also emit sufficient fencing
to make the usage of non-temporal stores un-observable to callers/callees.
— _mm_mfence(), _mm_Ifence(), _mm_sfence()

29



Locking technigues

There are different synchronization modes :

® Pessimistic locking
— Always take an (exclusive) lock to access/modify data in the critical section

® Optimistic locking
— Validate whether the data read in the critical section is still valid upon completion

" Lock-free
— Threads never block for any reason when reading or writing

— Leverage HW-support for synchronization (atomics)

® Speculative locking (hardware transactional memory (HTM))

30



Types of Locks TUT

® There are many different types of locks (we only look at a subset)

® Pessimistic:
— Exclusive lock .
— Only one thread may hold the lock at a time

Mutex

— Shared (Reader-Writer RW) lock
— Permit any number of readers to hold the lock concurrently 63 bits 1 bit

. . reader ‘ excl ‘
— Only allow a single writer to hold the lock AV

® Optimistic: 63 bits ‘1b11t‘
— Validate that the data read in the critical section has not changed ' -

Optimistic-Lock

31



Optimistic locking TLTI

® Validate that the data read in the critical section has not
changed in the meantime

void readOptimistically(Lambda& readCallback){

// Attempt to read optimistically
for(i in [1 : MAX_ATTEMPTS]){

preVersion = getVersion(); ® Good for frequently read data

if(isLocked(preVersion()) . . . .
continue; — avoids the expensive atomic writes

readCallback(); : st

postVersion = getversion(); required by pessimistic lock

if(preVersion == postVersion) — cache invalidation only needed on writes
return;

}

. . ® Challenges:
// Fallback to pessimistic locking

lockPessimistic(); — Use it when it is safe to fail and restart
dcallback(); . .
:ﬁiogi();ac Y — All operations must be restart-able w/o side-effects
} — With too much write contention, could lead to starvation

32



Lock (latch) implementation

There are two strategies to implement (pessimistic) locking:

® Spinning (in user space) — e.g., spinlock
— Waiting thread repeatedly polls lock until it becomes free
— But, the thread burns CPU cycles while sleeping
— Cost two cache miss penalties (if implemented well) - 150nsec

® Blocking (OS service) — e.g., mutex or user-space futex
— De-schedule the waiting thread until the lock becomes free
— Cost: two context switches (one to sleep, one to wake-up) = 12-20usec

33



Requirements for latches in databases Tm

® Most database workloads mostly read data (even OLTP workloads)
— Reading should be fast and scalable

® For tree-based data structures (e.g., indexes), we always need to traverse the top levels of the tree
— High contention on such hotspots — should be lockable with minimal overhead

® Latency is critical
— Avoid context switching as much as possible - cannot solely rely on OS-based locks

® Some fine-grain data like index nodes or hash buckets requires space efficient locks
— Standard mutex (std: :mutex) can be as much as 40-80 bytes — double the size for an ART node

® Efficient contention handling
— Handle contention gracefully, without sacrificing the uncontended path

34



Qualitative overview of locking modes

® Which locking mode is best for a certain type of workload?
— Workloads: read-only, read-mostly (big/small read-set), write-heavy, write-only
— Locking modes: pessimistic (exclusive, shared), optimistic

Workload Type Exclusive Shared Optimistic
Read-Only Too restrictive  “Read-Read Contention” No Overhead
Read-Mostly: cheap reads Too restrictive  Still some contention Restarts unlikely and cheap

Read-Mostly: big read set
Write-Heavy
Write-Only

Too restrictive

Restrictive

Lock overhead diminishes ‘ Restarts can be expensive

Good Many Aborts/Starvation

Equally good (all writes are locked exclusively)

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020
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Types of Locks TUm

® There are many different types of locks (we only look at a subset)

® Pessimistic:
— Exclusive lock .
— Only one thread may hold the lock at a time

Mutex

— Shared (Reader-Writer RW) lock
— Permit any number of readers to hold the lock concurrently 63 bits 1 bit

. . reader ‘ excl ‘
— Only allow a single writer to hold the lock A

® Optimistic: 63 bits ‘lbjlt‘
— Validate that the data read in the critical section has not changed ' -

Optimistic-Lock

" Hybrid: reader e
— Extend a shared lock with support for optimistic locking version

Hybrid-Lock
36



Hybrid locking

Class HybridLock {
RWMutex rwLock;
std::atomic<uint64_t> version;

public:

// simply call rwlLock

void lockShared(); {rwLock.lockShared();}

void unlockShared(); {rwLock.unlockShared();}
void lockExclusive(); {rwLock.lockExclusive();}

// always increment the version before
// unlocking to avoid races!
void unlockExclusive() {

++version; rwLock.unlockExclusive():}

bool tryReadOptimistically(Lambda& readCallback) {
if(rwLock.isLockedExclusive())
return false;

}

void readOptimisticIfPossible(Lambda& readCallback) {

}s

auto preVersion = version.load();

// execute read callback

readCallback();

// was locked meanwhile?

if(rwLock.isLockedExclusive())
return false;

// version still the same

return preVersion == version.load();

if(!tryReadOptimistically(readCallback)) {
// fallback to pessimistic locking
lockShared();
readCallback();
unlockShared();

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020
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Evaluating different locks on TPC-C

® Implemented a set of different locks
in the HyPer database

® Evaluate their performance using
the TPC-C benchmark

o~
o
o
=

200K+

throughput (txn/s)

Exclusive-Spinlock
Optimistic-Lock
Hybrid-Lock
RW-Spinlock
RW-Mutex (Blocking)

=G X
Pha o0 ’ X
~ ~ Vd Ptie
S / .-
WX, X X
- E
% P
= P
N, Y
X
R SRS
u*_ _____ Kem oo 8

Hyper-Threading

15

20 25 30 35 40

number of threads

(a) TPC-C - Increasing the number of threads (100 warehouses)

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

throughput (queries/s)



Granularity of locking

® The number of tuples protected by the
lock can have a big impact on the
system’s performance.

® For point accesses like updates and
key look-ups, the granularity sets the
number of concurrent accesses.

— Fine granularity is good for
write-heavy workloads
— Coarse granularity is better for
read-heavy workloads
— e.g., ho need to acquire a lock for
every tuple during a scan

throughput (full table scans/s)
w
o
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Evaluate contention handling strategies TUT

® How well do different contention handling

strategies behave? 15001 - Test-and-set
® Spinning *
— Naive (test-and-set) *
— Test-test-and-set (with back-off) — 10001 '
— Local spinning % b
— Ticket-lock (with back-off) E
2% TicketLock
@ / _ _a——-—y lesttest-and-set
® Blocking 2091 Ef’é‘a"'&“—aﬂf’ <575 L Bxp Backo
— std:: mutex g - ’
— ParkingLot
— Each thread parks itself in a global o [raningLo!
hashtable (parking lot) until the callback T 5 10 15 20 25 30 35 40
condition is satisfied. number of threads

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020 40



Efficient implementation of
concurrent data-structures

41



Concurrent list-based set

® Operations: insert(key), remove(key), contains(key)

® Keys are stored in a (single-)linked list, sorted by key
® head and tail are always there (“sentinel” elements)

head

-0

v
~
A 4

42

tail

® Why atomics like CAS is sometimes not enough?
— Thread A: remove(7)
— Thread B: insert(9)

A 4

42



Coarse-grained locking

® Use a single lock to protect the entire data structure

head

tail

® Positive:
— Very easy to implement

® Negative:
— Does not scale at all
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Approaches to make it more scalable

® Fine-grained locking
— Split object into independently synchronized components.
— Conflict when they access the same component at the same time.

® Optimistic synchronization
— Search without locking.
— If you find it, lock and check. If OK, we are done. If not, start over (can be expensive).

44



Fine grained locking with lock coupling

® Also called hand-over-hand locking or crabbing

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers




Lock coupling

® Also called “hand-over-hand locking” or “crabbing”

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers




Lock coupling

® Also called “hand-over-hand locking” or “crabbing”

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers

-00 7 42




Lock coupling

® Also called “hand-over-hand locking” or “crabbing”

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers

-00 7 42 ¢'e)

® Positive:

— Easy to implement
— No restarts

" Negative:
— Better than coarse-grained lock (e.g., threads can traverse in parallel), but inefficient.



Optimistic

® Trust, but verify
® Traverse the list optimistically without taking any locks

A 4

A 4
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Optimistic

® Trust, but verify

® Traverse the list optimistically without taking any locks
® Lock 2 nodes (predecessor and current)

A 4

A 4
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Optimistic Tm

® Trust, but verify
® Traverse the list optimistically without taking any locks
® Lock 2 nodes (predecessor and current)

® Validate: traverse the list again and check that predecessor is still reachable and points to current
® If validation fails, unlock and restart

-00 a b " d
a a

v
Q
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Optimistic Tm

® Trust, but verify
® Traverse the list optimistically without taking any locks
® Lock 2 nodes (predecessor and current)

® Validate: traverse the list again and check that predecessor is still reachable and points to current
® If validation fails, unlock and restart

-00 1 a b | d
a a

® Positive:

— Lock contention unlikely
" Negative:

— Must traverse list twice, method contains acquires a lock

v
Q
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Optimistic lock coupling
® Associate lock with update counter

® Write:
— Acquire lock (exclude other writes)
— Increment counter when unlocking

— Do not acquire locks for nodes that are not modified (traverse like a reader)
® Read:

— Do not acquire locks, proceed optimistically
— Detect concurrent modifications through counters (and restart if necessary)

53



Optimistic lock coupling
® Associate lock with update counter

® Write:
— Acquire lock (exclude other writes)
— Increment counter when unlocking

— Do not acquire locks for nodes that are not modified (traverse like a reader)
® Read:

— Do not acquire locks, proceed optimistically
— Detect concurrent modifications through counters (and restart if necessary)

® Positive
— Easy to implement
— Scalable

" Negative
— has restarts
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Synchronization in ART tree

TUTI

® Evaluate the different synchronization approaches (+ lazy (ROWEX), speculative (HTM) and Masstree)

on the Adaptive Radix Tree

lookup insert remove

100

M operations/second
(€]
o
1

1
5 10 15
threads

Figure 5: Scalability (S0M 8 byte integers)

src: Leis et al. The ART of Practical Synchronization. DaMoN 2016

no sync.
—4— |ock coupling

Opt. Lock Coupling
—+= ROWEX
= HTM
=¥~ Masstree
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