Data Processing on Modern Hardware

Jana Giceva

Lecture 7: Multicore CPUs

Parallelization and Synchronization

The rise of the multi-core machines Tm

42 Years of Microprocessor Trend Data

ok ® To make the most out of

; ; : W Transistors .
A Aa 4 (thousands) multicore processors we can:
106_ ,,A,:‘A,AA,,,,,,,,,_
5 | | s At““ i Single-Thread
1R S SRR [AT - - . .

10 | L ‘3 o8 ™ ** | Performance — Allow multiple different tasks
: ! (1} . .

10* | s ..-' ? { (SpecINT x 107 to be running concurrently —
; P A Frequency (MHz

TP A;A___A:___ L 2 WA g | Frequency (MHz) concurrency
: ‘ °
5 | 1 Typical Power i i

2l - . 6 \ "="':Iv ‘ v""‘v“ "g,' | Pl (multiprogramming)

ol b S m oy, Y:" _____________ YT ete 'i ___________ Number of

LA = = vV) 2 | Logical Cores — Parallelize the implementation
A m v |y vvovy ‘ uom‘

10° | [4 e R i ““WW" """ T of a single task —

]]]] .
1970 1980 1990 2000 2010 2020 parallelism
Year (parallel programming)

Criginal data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Parallelism

Basic concepts

® Work partitioning (expressing parallelism)
— Work must be split in parallel tasks
— Also known as domain decomposition

® Scheduling
— Tasks must be mapped into execution contexts

® Task granularity
— How much work a task performs?
— Too little — large overhead
— Too much — difficult for efficient load balancing

® Correctness
— Order of reads and writes is non-deterministic

— Synchronization is required to enforce the order

partitioning

O

O

Scalabllity Tm

® An overloaded concept:
— e.g., how well a system reacts to increased load, e.g., clients in a server

® Speed-up — how well does the RT reduces for the same problem size by adding resources (e.g., cores).
— Speed up for problem size X with N resources: SpeedUp(N) = RT(1,X)/RT(N, X)
— Ideal: linear function

® Scale-up — how well the system deals with larger load (problem size) by adding resources
— Scale up for N x larger problem by adding N x resources: ScaleUp(N) = RT(1,X)/RT(N,NX)
— Ideal: constant function

® Scale-out — how well the system deals with larger load (problem size) by adding more servers / machines
— Scale out for N x larger problem by executing on N x machines: ScaleOut(N) = TP(1,x)/TP(N,NX)
— Ideal: constant function (should behave like Scale-up)

Our focus: speed-up

® Sequential execution time: T,
" Execution time T,, on p CPUs

speedup

® (parallel) speed-up S, onp CPUs: S, = :—1

p
— §, = p : linear speed-up

— S, < p : sub-linear speed-up / performance loss

— S, > p : super-linear speed-up / usually poor baseline

"WhyS,<p?
— Programs may not contain enough parallelism
— Some parts may be inherently sequential
— Overheads due to parallelization
— Typically associated with synchronization
— Architectural limitations
— Memory contention (memory bound)

linear speedup

sub-linear speedup

Amdahl’'s Law

Suppose we parallelize an algorithm using n cores and p is the proportion of the task that can be

parallelized (1 - p cannot be parallelized)

. : :
The speed up of the algorithm is —(1_p)+%

® For infinite parallelism, the speed-up is

1
(1-p)

® For example, if 90% of the work is parallelized,
the maximum speed up is 10

® Ensure that every phase of one’s algorithm that
depends on the input data size is parallelized.

Speedup

20

18

16

14

12

10

Amdahl's Law

—
——

/ Parallel portion
50%

/L e 75%
/ —— 90%
/ —— 95%

o g < o0 (=] o =
- w o wn - o
—] wn 3

2048
4096
8192
16384

Number of processors

32768

65536

TUTI

img src: Wikipedia

Pitfalls in parallel code

® Non-scalable algorithm
— Rethink the algorithm
— e.g., searching a tree: which one is easier to parallelize BFS or DFS?

® Load imbalance
— Break work into smaller tasks, dynamically schedule these between threads

® Task overhead
— Set a minimum per-thread task size (not too small, not too large)

Parallelize database workloads

In database systems:

® Inter-query parallelism (Concurrency, Multi-programming)
— Requires a sufficient number of co-running queries.
— May work well for OLTP workloads
— Characterized by many simple queries
— Data analytics / OLAP are resource-heavy
— Will not help an individual query

System constructs for concurrency and parallelism

® Processes, kernel- and user-level threads and fibers

® Process: an instance of a program that is isolated from other processes on the machine.

— Has its own private section of the machine’s memory.
— A process abstraction is a virtual computer. Scheduled by the kernel.

® Thread: a locus of control inside a running program.
— Athread abstraction is a virtual processor. Scheduled by the kernel.
— Threads share all the memory in the process.

® User-level threads: act like threads, but implemented in user-space.
— Can be scheduled preemptively or cooperatively. Invisible to the kernel.

® Fibers: light-weight thread of execution that uses co-operative multi-tasking.
— Fibers yield themselves to run another fiber while executing.

10

Process model in databases Tm

® OS Process per DBMS worker
— Used by early DBMS implementations
— DBMS workers are mapped directly onto OS processes

® OS Thread per DBMS worker
— Single multi-threaded processes hosts all DBMS worker activity
— Adispatcher thread listens for new connections. Each connection is allocated a new thread.

® DBMS Threads
— Lightweight user-space threading constructs (replacing the need for OS threads)
— Fast task switching at the expense of replicating a good deal of the OS logic in the DBMS
— Task-switching, thread state management, scheduling, etc.

® Are co-routines (fibers) next?

11

Parallelize database workloads

In database systems:

" Intra-query parallelism
— Intra-query parallelism is a must
— Should still allow a few co-running queries.

12

Parallelization strategies

Parallelization strategies for intra-query parallelism:

® Pipeline parallelism?

® Data partitioning / parallel operator implementation?

13

Volcano-style parallelism TLTI

Goal: Parallelize the query engine in a clean, uniform way.
Volcano's Solution: encapsulate the parallelism in a query operator of its own, not in the QP infrastructure.

Overview: kinds of intra-query parallelism available:

® pipeline

® partition, with two subcases:
— intra-operator parallelism (e.qg. parallel hash join, or parallel sort)
— inter-operator parallelism -- bushy trees

We want to enable all -- including setup, teardown, and runtime logic -- in a clean encapsulated way.

The exchange operator:
® an operator you pop into any single-site dataflow graph as desired -- anonymous to the other operators.

src: Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994
14

Volcano-style parallelism TLTI

® Plan-driven approach:
— Optimizer determines at compile time the degree of parallelism

Print

— Instantiates one query operator plan for each thread I
— Connects these with exchange operators, which encapsulate Exchange

parallelism and manage threads I

Join

® Elegant model which is used by many systems / \
Join Exchange
Exchange Exchange Scan
Scan Scan

src: Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994
15

Volcano-style parallelism TLTI

® Positive aspects:
— Operators are largely oblivious to parallelism

® Drawbacks:
— Static work partitioning can cause load imbalance
— Degree of parallelism cannot be easily change mid-query
— Potential overhead:
— Thread over-subscription causes context switching
— Exchange operators create additional copies of the tuples

src: Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994
16

Parallelism in Modern DBMSs today Tm

® Query coordinator manages the parallel execution
— Obtains the number of parallel servers

— i i iti i -distri i Parallel execution Parallel execution
Determines granularity of partitioning and load-distribution § frakas cnec ¢ arakcl exeoull
ORDER BY table scan
operalion
® Parallelism within and between operators
o . . A-G
— Pipeline with depth 2 (producer — consumer pair) '\
— e.g., parallel scan and group-by employees Table
uses 8 servers in total.] H-M -
User :
Process 4 C%ﬁfi?rtlmr
® DOP (degree of parallelism) — the “— ns Pu—
number of parallel execution servers S \
associated with a single operator from employees 7.7 /
. ORDER BY last name;
— Can be chosen manually or automatic
i i Intra- Inter- Intra-
— Adaptive means it can reduce the DOP Operaton Operaion Operation

. . alledi lleli lel
as the load in the system increases parallefiem parallelsm parallefsm

Inter-operator parallelism and dynamic scheduling

src: https://docs.oracle.com/cd/E11882_01/server.112/e25523/parallel002.htm
17

Parallelizing the radix join TUT

one hash table
per partition

® Use the task queuing model that decomposes :

the execution into parallel tasks, each executing R D . m*hZ f hz* S D\

> 2 .

a fraction of the total work ! T 1/ [l f 2] “ h1 NE

® The runtime system can then dynamically schedule 1 \D 3 —. '
. shia” 4*"\ Thip
the tasks on different hardware threads T. \‘m+h2] hzef
- N/ -

pass 1 pass 2 pass 2 pass 1

[S —

(D) partition) build 3) probe (D) partition

® General guidelines:
— Create more tasks than there are threads
— If a task’s input size exceeds a threshold (e.g., due to skew):
— Further split it up or if not possible put it aside and handle it afterwards
— Ensure to have good load-balancing among the hardware threads.

® More details for the specific stages of the join in
Sort vs Hash Revisited: Fast Join Implementations on Modern Multicore CPUs by Kim et al. (VLDB 2009)

18

Impact of task granularity on parallel operators

® Different stages in radix join:
— 1 - 2: compute local histogram for R and S
— 3 - 4: partitioning passes 1 and 2
— 5:join phase (partition-wise build and probe)

® Evaluate the effect of task granularity and queuing on
the performance of the radix join (zipf 1.5)
— Left — simple task queuing
— Right — task decomposition for large part/join tasks

time [billion cycles]

® All threads do useful work in the beginning of each
execution stage (busy time with different gray shades)

® Simple task queuing leads to poor load-balancing and
threads need to wait on barriers — 25% perf. reduction

® With fine-grained task decomposition, we can identify
the large tasks and break them down for good load
balancing among all the working threads.

E22 idle time
8+ B busy time

thread 1d

TUTI

src: Balkesen et al. Main Memory Hash Joins on Multi-core
CPUs: Tuning to the Underying Hardware. ICDE 2013

1

(o]

Data partitioning

Lessons learned:

® Use fine-grained partitioning
— Increased scheduling overhead seems bearable
® Assign partitions / tasks dynamically to processors
— Make load balancing easier

® How to incorporate that at an engine level?
— Morsel-driven parallelism (as implemented in HyPer)

20

Morsel-driven query execution Tm

® Example of user-level task-based parallelism - HT(S)
as framework in database systems. 5 Tc A |8
Result P ‘_probe(sl.\ 168 — R
) . i ?G g S ..._store/ 33 |x ’probetlo) 8133 probe(lﬁ)A 7
® Break input data into yd 101y Nz S FEE
H H “ ” robe 7 ©
constant-sized work units (“morsels”) store - probe(27) IS5 T
I4
. . . . 23
® Dispatcher assigns morsels and a pipeline -
(of operators) to worker threads (scheduling)
Dispatcher
® Number of worker threads = number of

hardware threads
Figure 1: Idea of morsel-driven parallelism: R X4 S Xg T

® Operators are designed for parallel execution

src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014
21

Query pipeline parallelization

® Each pipeline is parallelized individually using all threads

Build HT(T)

src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

Build HT(S)

/

g
I ¢
Pipe 2 '
l Pipe 2 Pipe 2
Scan s \
Scan s Scan§

22

Query pipeline parallelization

® Each pipeline is parallelized individually using all threads

Probe HT(S)

Probe HT(S)
Probe HT(S)
Build HT(S)

Probe HT(S) o

o
Pipe 3

Pipe 3
g \ l Scan R
Pipe 3

Scan R

Pipe 3 l
l Scan R

Scan R

Build HT(T)

src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

23

Concurrency and Synchronization

24

Concurrency Iin database workloads

Databases are often faced with highly concurrent workloads.

Good news:
® Exploit parallelism offered by the hardware (increasing number of cores)

Bad news:
® Increases relevance of synchronization mechanisms.

Synchronization in databases

Two levels of synchronization in databases:

® Synchronize on user data to guarantee transactional semantics:
— database terminology: locks

® Synchronize on database-internal data structures
— database terminology: latches

We will focus on the latter (latches), even when we refer to them as locks.

26

Cache coherence

® Cores have private caches
® CPU manages the shared memory and private caches using a cache coherency protocol

Cache coherency protocol ensures the consistency of data in caches
® Implements the two fundamental operations: load and store using:

— Snooping-based coherence
— All processors communicate to agree on the state

— Directory-based coherence
— A centralized directory holds information about state/whereabouts of data items

27

Cache coherency protocol

® Most contemporary processors use the MESI cache coherency protocol (or a variant)

® MESI protocol has the following states:
— Modified: cache line is only in current cache and has been modified
— Exclusive: cache line is only in current cache and has not been modified
— Shared: cache line is in multiple caches
— Invalid: cache line is unused

® Intel uses the MESIF protocol, with an additional Forward state
— Special shared state indicating a designated “responder”

28

Atomics Tm

® x86 provides a lock prefix that tells the hardware:
— Do not let anyone read / write the value until | am done with it
— Not the default case (because it is slow!)

® Compare-and-swap (CAS):
— lock cmpxchg

® Exchange:
— xchg (automatically locks the bus)

® Read-modify-write:
— lock add

® If the compiler (or you) also emit code using non-temporal stores, it must also emit sufficient fencing
to make the usage of non-temporal stores un-observable to callers/callees.
— _mm_mfence(), _mm_Ifence(), _mm_sfence()

29

Locking technigues

There are different synchronization modes :

® Pessimistic locking
— Always take an (exclusive) lock to access/modify data in the critical section

® Optimistic locking
— Validate whether the data read in the critical section is still valid upon completion

" Lock-free
— Threads never block for any reason when reading or writing

— Leverage HW-support for synchronization (atomics)

® Speculative locking (hardware transactional memory (HTM))

30

Types of Locks TUT

® There are many different types of locks (we only look at a subset)

® Pessimistic:
— Exclusive lock .
— Only one thread may hold the lock at a time

Mutex

— Shared (Reader-Writer RW) lock
— Permit any number of readers to hold the lock concurrently 63 bits 1 bit

. . reader ‘ excl ‘
— Only allow a single writer to hold the lock AV

® Optimistic: 63 bits ‘1b11t‘
— Validate that the data read in the critical section has not changed ' -

Optimistic-Lock

31

Optimistic locking TLTI

® Validate that the data read in the critical section has not
changed in the meantime

void readOptimistically(Lambda& readCallback){

// Attempt to read optimistically
for(i in [1 : MAX_ATTEMPTS]){

preVersion = getVersion(); ® Good for frequently read data

if(isLocked(preVersion())
continue; — avoids the expensive atomic writes

readCallback(); : st

postVersion = getversion(); required by pessimistic lock

if(preVersion == postVersion) — cache invalidation only needed on writes
return;

}

. . ® Challenges:
// Fallback to pessimistic locking

lockPessimistic(); — Use it when it is safe to fail and restart
dcallback(); . .
:ﬁiogi();ac Y — All operations must be restart-able w/o side-effects
} — With too much write contention, could lead to starvation

32

Lock (latch) implementation

There are two strategies to implement (pessimistic) locking:

® Spinning (in user space) — e.g., spinlock
— Waiting thread repeatedly polls lock until it becomes free
— But, the thread burns CPU cycles while sleeping
— Cost two cache miss penalties (if implemented well) - 150nsec

® Blocking (OS service) — e.g., mutex or user-space futex
— De-schedule the waiting thread until the lock becomes free
— Cost: two context switches (one to sleep, one to wake-up) = 12-20usec

33

Requirements for latches in databases Tm

® Most database workloads mostly read data (even OLTP workloads)
— Reading should be fast and scalable

® For tree-based data structures (e.g., indexes), we always need to traverse the top levels of the tree
— High contention on such hotspots — should be lockable with minimal overhead

® Latency is critical
— Avoid context switching as much as possible - cannot solely rely on OS-based locks

® Some fine-grain data like index nodes or hash buckets requires space efficient locks
— Standard mutex (std: :mutex) can be as much as 40-80 bytes — double the size for an ART node

® Efficient contention handling
— Handle contention gracefully, without sacrificing the uncontended path

34

Qualitative overview of locking modes

® Which locking mode is best for a certain type of workload?
— Workloads: read-only, read-mostly (big/small read-set), write-heavy, write-only
— Locking modes: pessimistic (exclusive, shared), optimistic

Workload Type Exclusive Shared Optimistic
Read-Only Too restrictive “Read-Read Contention” No Overhead
Read-Mostly: cheap reads Too restrictive Still some contention Restarts unlikely and cheap

Read-Mostly: big read set
Write-Heavy
Write-Only

Too restrictive

Restrictive

Lock overhead diminishes ‘ Restarts can be expensive

Good Many Aborts/Starvation

Equally good (all writes are locked exclusively)

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

35

Types of Locks TUm

® There are many different types of locks (we only look at a subset)

® Pessimistic:
— Exclusive lock .
— Only one thread may hold the lock at a time

Mutex

— Shared (Reader-Writer RW) lock
— Permit any number of readers to hold the lock concurrently 63 bits 1 bit

. . reader ‘ excl ‘
— Only allow a single writer to hold the lock A

® Optimistic: 63 bits ‘lbjlt‘
— Validate that the data read in the critical section has not changed ' -

Optimistic-Lock

" Hybrid: reader e
— Extend a shared lock with support for optimistic locking version

Hybrid-Lock
36

Hybrid locking

Class HybridLock {
RWMutex rwLock;
std::atomic<uint64_t> version;

public:

// simply call rwlLock

void lockShared(); {rwLock.lockShared();}

void unlockShared(); {rwLock.unlockShared();}
void lockExclusive(); {rwLock.lockExclusive();}

// always increment the version before
// unlocking to avoid races!
void unlockExclusive() {

++version; rwLock.unlockExclusive():}

bool tryReadOptimistically(Lambda& readCallback) {
if(rwLock.isLockedExclusive())
return false;

}

void readOptimisticIfPossible(Lambda& readCallback) {

}s

auto preVersion = version.load();

// execute read callback

readCallback();

// was locked meanwhile?

if(rwLock.isLockedExclusive())
return false;

// version still the same

return preVersion == version.load();

if(!tryReadOptimistically(readCallback)) {
// fallback to pessimistic locking
lockShared();
readCallback();
unlockShared();

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

37

Evaluating different locks on TPC-C

® Implemented a set of different locks
in the HyPer database

® Evaluate their performance using
the TPC-C benchmark

o~
o
o
=

200K+

throughput (txn/s)

Exclusive-Spinlock
Optimistic-Lock
Hybrid-Lock
RW-Spinlock
RW-Mutex (Blocking)

=G X
Pha o0 ’ X
~ ~ Vd Ptie
S / .-
WX, X X
- E
% P
= P
N, Y
X
R SRS
u*_ _____ Kem oo 8

Hyper-Threading

15

20 25 30 35 40

number of threads

(a) TPC-C - Increasing the number of threads (100 warehouses)

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

throughput (queries/s)

Granularity of locking

® The number of tuples protected by the
lock can have a big impact on the
system’s performance.

® For point accesses like updates and
key look-ups, the granularity sets the
number of concurrent accesses.

— Fine granularity is good for
write-heavy workloads
— Coarse granularity is better for
read-heavy workloads
— e.g., ho need to acquire a lock for
every tuple during a scan

throughput (full table scans/s)
w
o

5

75Kk

50k

25k

Exc-Spinlock | | RW-Spinlock RW-Mutex Optimistic Hybrid-Lock
kA —@| »—9

/ Do

; 32
/ 4,9 Low overhead as

/ enables fine- °F
/ A grained 0
locking...
.

/e -

/\' o

o &

/ but concurrent| |¢ while we can | =

' writes lead to\ | | fall back to =

/ starvation... shared locking @

,/.\ /\ o

/ o

/ » B

/ 2

'Y =

/ g 5

107
1k

100k
10 |
1k

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

100k

1k]

100k
10
1k

100k™

10]
1k
100k]

39

Evaluate contention handling strategies TUT

® How well do different contention handling

strategies behave? 15001 - Test-and-set
® Spinning *
— Naive (test-and-set) *
— Test-test-and-set (with back-off) — 10001 '
— Local spinning % b
— Ticket-lock (with back-off) E
2% TicketLock
@ / _ _a——-—y lesttest-and-set
® Blocking 2091 Ef’é‘a"'&“—aﬂf’ <575 L Bxp Backo
— std:: mutex g - ’
— ParkingLot
— Each thread parks itself in a global o [raningLo!
hashtable (parking lot) until the callback T 5 10 15 20 25 30 35 40
condition is satisfied. number of threads

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020 40

Efficient implementation of
concurrent data-structures

41

Concurrent list-based set

® Operations: insert(key), remove(key), contains(key)

® Keys are stored in a (single-)linked list, sorted by key
® head and tail are always there (“sentinel” elements)

head

-0

v
~
A 4

42

tail

® Why atomics like CAS is sometimes not enough?
— Thread A: remove(7)
— Thread B: insert(9)

A 4

42

Coarse-grained locking

® Use a single lock to protect the entire data structure

head

tail

® Positive:
— Very easy to implement

® Negative:
— Does not scale at all

43

Approaches to make it more scalable

® Fine-grained locking
— Split object into independently synchronized components.
— Conflict when they access the same component at the same time.

® Optimistic synchronization
— Search without locking.
— If you find it, lock and check. If OK, we are done. If not, start over (can be expensive).

44

Fine grained locking with lock coupling

® Also called hand-over-hand locking or crabbing

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers

Lock coupling

® Also called “hand-over-hand locking” or “crabbing”

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers

Lock coupling

® Also called “hand-over-hand locking” or “crabbing”

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers

-00 7 42

Lock coupling

® Also called “hand-over-hand locking” or “crabbing”

® Hold at most two locks at a time

® Interactive lock acquisitions / release pair-wise

® May use read/write locks to allow for concurrent readers

-00 7 42 ¢'e)

® Positive:

— Easy to implement
— No restarts

" Negative:
— Better than coarse-grained lock (e.g., threads can traverse in parallel), but inefficient.

Optimistic

® Trust, but verify
® Traverse the list optimistically without taking any locks

A 4

A 4

49

Optimistic

® Trust, but verify

® Traverse the list optimistically without taking any locks
® Lock 2 nodes (predecessor and current)

A 4

A 4

50

Optimistic Tm

® Trust, but verify
® Traverse the list optimistically without taking any locks
® Lock 2 nodes (predecessor and current)

® Validate: traverse the list again and check that predecessor is still reachable and points to current
® If validation fails, unlock and restart

-00 a b " d
a a

v
Q

51

Optimistic Tm

® Trust, but verify
® Traverse the list optimistically without taking any locks
® Lock 2 nodes (predecessor and current)

® Validate: traverse the list again and check that predecessor is still reachable and points to current
® If validation fails, unlock and restart

-00 1 a b | d
a a

® Positive:

— Lock contention unlikely
" Negative:

— Must traverse list twice, method contains acquires a lock

v
Q

52

Optimistic lock coupling
® Associate lock with update counter

® Write:
— Acquire lock (exclude other writes)
— Increment counter when unlocking

— Do not acquire locks for nodes that are not modified (traverse like a reader)
® Read:

— Do not acquire locks, proceed optimistically
— Detect concurrent modifications through counters (and restart if necessary)

53

Optimistic lock coupling
® Associate lock with update counter

® Write:
— Acquire lock (exclude other writes)
— Increment counter when unlocking

— Do not acquire locks for nodes that are not modified (traverse like a reader)
® Read:

— Do not acquire locks, proceed optimistically
— Detect concurrent modifications through counters (and restart if necessary)

® Positive
— Easy to implement
— Scalable

" Negative
— has restarts

54

Synchronization in ART tree

TUTI

® Evaluate the different synchronization approaches (+ lazy (ROWEX), speculative (HTM) and Masstree)

on the Adaptive Radix Tree

lookup insert remove

100

M operations/second
(€]
o
1

1
5 10 15
threads

Figure 5: Scalability (S0M 8 byte integers)

src: Leis et al. The ART of Practical Synchronization. DaMoN 2016

no sync.
—4— |ock coupling

Opt. Lock Coupling
—+= ROWEX
= HTM
=¥~ Masstree

55

References Tm

® Various papers cross-referenced in the slides

® Lecture: Data Processing on Modern Hardware by Prof. Viktor Leis (Uni Jena, past TUM)
® Lecture: Data Processing on Modern Hardware by Prof. Jens Teubner (TU Dortmund, past ETH)
® Lecture: Supporting Parallelism in OS and Programming Languages by Dr. Kornilios Kourtis (IBM Research, past ETH)

® Book: Architecture of a Database System by Hellerstein, Stonebraker and Hamilton
— Chapters 2 and 3
® Book: The Art of Multiprocessor Programming by Herlihy and Shavit
— Chapters 7 and 8
® Book: Is Parallel Programming Hard, And, If So, What Can You Do About It? by McKenny
® Book: Computer Architecture: A Quantitative Approach by Hennessy and Patterson
— Chapter 5

56

