Offloading Compute-
intensive Tasks to FPGASs in

the Datacenter

Zsolt Istvan

IMDEA Software Institute, Madrid

zsolt.istvan@imdea.org

i dea

software

History Lesson

10° , , .
Data Estimate
105 S [Exabytes]
caling
10% |-
e Frequency [MHZz]
5 ',"' Number of
10° .- Logical Cores
107 -
100 | === qpem =)

1990 1995 2000 2005 2010 2015 2020 2025
Year

Based on a plot layout by K. Rupp. Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte,
0. Shacham, K. Olukotun, L. Hammond, and C. Batien; 2010-2015 by K. Rupp. Data growth estimate by C. Maxfield.

FPGAs as a middle ground

-

"More flexible... Dedicated HW

More efficient... 100X

--
| p—
Microprocessors
2 3 4

SN S A5 16 17 18 19 20
Processor Number (sorted by efficiency)

-
(@)

—

©
—_—

=
=
~
n
(a8
o
<
>
()
=
L
A
Y
(-
(¢})
)
=)
| -
(<)
=
w

Source: ISSCC Proceedings

FPGAs in Research and Datacenter

il v e s Field Programmable Gate Array (FPGA)
Sl . :

H +++: %48 " Free choice of architecture
H 1 . : T

:thi 1 EE E " = Fine-grained pipelining,

:i e : communication, distributed memory
_|

HITT " EE E ~ = Tradeoff: all “code” occupies chip

! o el space

i St

"TE GBisiemtad

icontureale [Embesied [oy = Running in the 100-600MHz range

Output Blow Logic Block) Memory

= <25W power consumption

Integration Options

goooon

goooon

M=

UJD

goooono
1) On the side

Data

ooEd00

id

goodod

~

J

gooood

2) In data-path

goodod

Data

EIEIiEIEI

qoooon

gooooo
gooooo

3) Co-processor

In the Cloud Today

Accelerator
"= Amazon F1

= For compute-intensive tasks

In data path
= Microsoft Catapult

= For reducing data movement

)
~ Socketl Socket?2

Co-processor
" |Intel Xeon+FPGA
= For compute tasks

WCS 2.0 Server Blade

Catapult V2

40Gb/s

Intel Xeon+FPGA Gen.1

Socketl

Intel Xeon+FPGA Gen.2

FPGA

“
6

[

Programming FPGAs

= Challenge: adapting algorithms to the parallelism of the FPGA

Synthesized Placed & :>
:> Code :> Circuit Routed

* Coding: Hardware definition languages, high level languages
= Synthesis: Produce a logic-gate level representation (any FPGA)
= Place & route: Circuit that gets mapped onto specific FPGA

From code to circuit

= All code is turned into registers and gates mapped to logic blocks
= QOrganize into modules —f,.,...(inputs) = outputs
Programming in HDL

= Execution synchronous to a clock (Verilog, VHDL): low level of
abstraction, but full control

Fmax depends on
“‘most expensive”

a b C t=1 t
step
Loop forever: = i— —l— - —7/-_ --
if (a==b) then
d <= C+1 i, > = +1 +2 Fmax = 100MHz

else
d <= c+2 l l t=2
end if

" Latency = 1 cycle

t=3

From code to circuit

= All code is turned into registers and gates mapped to logic blocks
= Organize into modules —f,._...(inputs) = outputs
= Execution synchronous to a clock

If programming the
FPGA in HLS, the

compiler can

Loop forever: al b c =1 (sometimes) help
if (a==b) then = 1' -l- - -;I;; -

X <= 0
else = +1

X = 4 ! v =2
end if . x c i . , Fmax = 150MHz
<= ¢ . e iy Latency = 2 cycles
i <= c+l
= +1 +1 t=3
if (x==0) then

d <= c’+1 ' Y
else >

d<=3i+1 0 e e e - = = .l_ -
end if

d t=4

Two examples

= Regular expression matching:
= Constant throughput regardless of the expression

= K-means:
= Flexible use of resources (throughput / exploration)

10

Regular Expressions in Data Analytics

= Regular expression = search pattern in text
= AddressinCluj: Cluj ((|-)Napoca)?

= Filter rows in databases (map to regex)
SELECT ... FROM customer
WHERE age<35 AND purchases>2
AND address LIKE “%Cluj%Napoca%”

" Feature engineering in machine learning pipelines

|]
U Feature Engineering
Features. I
E Target
m—&—” || Y Lo
R/ R/ ;

4 o
E Data Quality Modeling Model Model
& Transformation Table Building

7
L Mt S

Data
Integration

11

Regular Expression Matching — Challenges

Compute intensive & Performance depends on complexity

Processing rate [MB/s],

single thread

1500

Intel Hyperscan library (Xeon E5-2680 v2)

|_\

o

o

(=]
|

500 -

P.O. Boxes

\ 2 Qv
. U/\

N

__

P.O. [whitespaces] Boxes

12

Finite State Automaton

= a.*(b|c)d

= NFAvs. DFA

= Nondeterministic — Multiple states active at the
same time (more compute per input character)

= Deterministic — State “explosion” (large footprint
of state machine in memory)

13

Implementing NFAs

CPUs turn NFAs into iterative instructions

FPGAs good with NFAs

= Typically in networking scenarios (SNORT rules, etc.)

i=1;j=1;
while (true){

High Level Code

! - . | [110tee1110100088
."EIH = 1400 | gaapeacnnsaannel
1 = 1+{i=7):}| | 1101801118190000

i BHA1EHEBRBAAREE1
110168801 B800068

mav r@,#1 8010080008900004
mov rl,#1 1161610115800811
1; 80 1BB000BRAGOEES

1161661016800611
add r2,r0,rl} |50 ssaoneeanies
str r2,[r3] 11019G0118100084
add r3,#d4 AA0DBAA0DEEAODEL

1181688118 180688
mov rd,rl H90166060BA0019

mov rl,r2 1611161811111111
b1 1111111111111881

Assembly Code Binary Code

= The automaton can be compiled to actual circuitry = no flexibility!

14

Towards a Parameterizable Design

= Deconstruct the NFA:
= Characters

= Transitions >
= States //\7

Q

15

Pipelined and parameterized design

...

Choose E Triggers . i State Trans.
characters at
run-time

Input

2> O =2 O » T =» 9

Character Matchers States

Pipelined and parameterized design

Choose : Triggers
characters at

oo

run-time

Input

T > N > © 5 < » X

Character Matchers

oo

State Trans.

Select what
connections to
use at run-time

States

17

Pipelined and parameterized design

Choose Triggers State Trans.
characters at
run-time
A

Select what
Y connections to
: use at run-time

Input 9

Skeleton of an NFA

= To be able to implement any expression we need the equivalent
of a fully connected graph

= Resources limited on the FPGA
= All “code” occupies space.

" Find a way to compress NFAs
= Less states & Less character matchers?

19

Decoupling Characters from States

Data parallel execution —a “Regex Processor”
Config.

Tuplel - “q.*p”
= One Regex Engine can

process 1B/cycle

oy . . Tuple2 b K
= Split input across multiple => “a.’b
units in parallel Tuple6 Tuple5 jl>_

= No overhead in on-chip Tuples > “a.*b”
communication

Tuple4 &> “g.*b”

Scale the design to desired bandwidth

90
80
70
60
50
40
30
20
10

0

Logic resource usage [thousand ALMs]

Input Ratdnpyt Rate
(Flash dri\(Mqin

memaory)
] 77

Fmax
== 2 00MHz
== 400MHz
0 5 10 15 20 25 30

Processing rate [GB/s]

Can use chip-space to add other types of computation

22

From expression to execution

foo.*bar+(123|abc) >
Transform to

NFA

> foo, bar,
123, abc
Extract

seqguences

Encode

#states
#characters

parallelism >

Program the
Circuit “templatty FPGA once

_____________]
Run-time
parameterization

23

Deployment of FPGAs

= As an accelerator card — high latency, far from
main memory

= Amazon EC2, Microsoft Catapult (>1M devices deployed)

= As a co-processor — low latency, high bandwidth
= |ntel Xeon+FPGA machines

4 Memory | 4 Memory |
I59.7 GB/s 159.7 GB/s
QPI)
Mem. controller ‘2 6.4 GT/S Mem. controller
oogg oogg
oogg oogg
CPU CPU

24

Changing the execution model pays off

B Intel Hyperscan
Pattern Complexity | Use case

P, | PO\ Box Tow DB 14 1 ¥ Google RE2

Po "Next.*Day.*Shipping’ medium DB 12

Py "a(REQIMG|RVWCEG)b’ medium Snort E

Py "Max-dotdot[\n]*[0-9]{3,}" medium Snort < 10 |

Ps | *(P\.O\. Box|PB).*(87[0-9]{4}) | high DB = - |

Ps | "SITE[\t\r\n\v\fl+NEWER’ high Snort £ 8 -
Q — |
g 6 -

HW throughput: 5GB/s for all patterns S 4 I -

(limited by communication to memory) - j |
o 2 - |

CPU used: Intel Xeon E5-2680v2 0 .

HW used: Intel Xeon+FPGA 1st Gen 1 2 3 a 5 6

Pattern #

= Software can be competitive, but needs many cores
= Throughput not dependent on complexity
= Matching can be combined with other processing on FPGA

K-means — Algorithm

B Goal: partition unlabeled data into several
clusters, where the number of clusters is
the “k” in the k-means.

B Two steps in each iteration:

B Assignment: assign data points to
closet centroid according to distance
metric

B Centroid update: the centroids are re-
calculated by averaging all the data
points within each cluster

B Long process if the data set and number of
iterations are large

0.9 ¢

0.8 ¢

0.7 1

0.6 1

0571

0.4 1+

03+

0.2 1

0.1

Iteration #0

0

01 02 0.3

26

Design — Execution Walk-Through

& Receives K-Means parameters

9 Fetch the initial centroids and

the data

@ Calculates the distance between
a data point and all the centroids
and assign it to closest centroid

data points
e
| -

19|]043U09)

t—
centroids,
SSE

Assignment Pipeline

@ Accumulates data points per cluster and
counts how many data points are assigned to

each cluster
6 Collect partial results from each pipeline

d Division for updating new centroid

0 Writes back the final results

13 4

—|D.P. i

I

D.P.|[D.P.[|D.P.|| Accu |

updated
centroids

Update Module

configurable
connections

<~ Division || Aggregator | 1 =

16 (5

Zhenhao He, David Sidler, Zsolt Istvan, Gustavo Alonso: A Flexible K-Means Operator for Hybrid Databases. FPL 2018

27

Uses of Parallelism

= K-Means algorithm

= FPGA outperforms several cores of the CPU
= Can use parallelism in two ways — cover more queries

Need to determine K

mm CPU-Seq-Tl1
B8 CPU-Conq
FPGA

K is kr
Cent

10 15 20

Execution time [s]

Fig. 5: Evaluation of multiple k, both sequentially and con-
knccurrently on software and concurrently in hardware

(Elbow method)

28

Closing Remarks

= Specialized hardware allows breaking traditional tradeoffs
= Convert from compute-bound to bandwidth-bound
= Adding a “spatial element” to the design tradeoffs

" Looking ahead: Datacenters are becoming more heterogenous

= Need to think about how we split functionality across processor types
= Programming non-CPU devices

We’re hiring at IMDEA Software! If you are looking for an internship or PhD position,
contact me!

zsolt.istvan@imdea.org 29

