
Data Processing on Modern Hardware
Assignment 2

Handout: 13th May 2020
Due: 20th May 2020

Introduction

For this assignment we have provided a sample code-base WeeDB of a minimal variant of an in-memory
database system, which is suitable for an analysis of different execution models. The code-base contains
the operators: scan, selection and aggregation for two of the processing models we covered in class:
iterator and materialization models. In order to execute the queries, the query plans are first specified as
a hierarchy of relational operators. In a full-fledged RDBMS, these plans would be generated with the
help of the SQL parser and an optimizer.

The following query plan reads the relation R, filters the elements with values 15 and 42, and sums
up the other elements.

The operators support the open(), next(), and close() interfaces for the iterator process-
ing model and setRelation() interface for the materialization processing model. The following
pseudo-code illustrates how to use the APIs to implement simple query plans for the two models.

To do the required analysis you should use a profiler. Most modern processors have so-called ”per-
formance counters”, with which different cache- and CPU-events can be directly measured in hardware.
These are counters with which certain events, e.g., “All requests that missed L2” can be counted. There
are various tools and libraries to access the counters. For instance: Intel PCM1 is a library that is avail-
able as open source software, works on Linux and supports very modern features of the Intel Processors.

1https://github.com/opcm/pcm

1

https://github.com/opcm/pcm


Perf23 is tool that emerged from the Linux kernel development and also works as a standalone program.
It is very widely used, and has decent community support with many tutorials. For Intel CPUs you can
find the list of events that can be monitored in the Intel manuals 4.

1. Task – Analysis

Execute different queries with tuple-at-a-time and operator-at-a-time execution models. You can either
use the given queries, or come up with your own. Analyze the runtime behaviour of your system and the
use of the system resources like CPU, caches, main memory and memory bus to answer the following
questions:

1. How heavily do the two processing models use the system’s resources?

2. What changes in resource usage do you observe when you vary the number of operators? Do the
differences meet your expectations? Perform some back of the envelope calculations.

The following metrics can be useful for your analysis:

• the number of memory accesses, e.g., cache lines that are moved between the main memory and
the LLC (L3 cache).

• the total number of instructions that were executed.

• the number of cache hits and cache misses

2. Task – Vectorization model

The vectorization model aims to increase the efficiency of the materialization model with a better use
of the CPU caches. Similar to the iterator model, the data of the relations are read and passed on from
operator to operator without further I/O. However, instead of individual tuples, the operators pass blocks
(i.e., vectors) of tuples to the next operator. With a suitable block size, the data remains in the CPU
cache. Vector-at-a-time can thus be seen as a combination of the two processing models. This is also
reflected in the interfaces of the different processing models, as shown in the figure:

Extend WeeDB with the vectorization model. Implement the vector-at-a-time interface for the
DBMS operators in the database operator.h, operators.h, and operatorsVector.cpp. You can use the
implementations of the other processing models as a guide.

3. Task – Analysis

Evaluate your implementation of the vector-at-a-time processing model. Expand on the previous analy-
sis and the cost-model. Use experiments to answer the following questions:

• What influence does the block size have on the execution of vector-at-a-time?

• Can vector-at-a-time increase the cache efficiency compared to operator-at-a-time processing?

2https://perf.wiki.kernel.org/index.php/Main_Page
3http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/
4http://www.intel.com/products/processor/manuals

2

https://perf.wiki.kernel.org/index.php/Main_Page
http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/
http://www.intel.com/products/processor/manuals

