
Data Processing on Modern Hardware
Assignment 4 – SIMD Vectorization

Handout: 3rd June 2020
Due: 10th June 2020 by 9am

Part 1: Aggregation

The following aggregation query counts the number of elements that are lower than 42. You can assume
that R is pre-populated with 100 million entries.

SELECT COUNT(*)
FROM R
WHERE R.a < 42

Use the code skeleton provided in the gitlab repository1 for two functions that implement the aggre-
gation query listed above (count8 and count64) to solve the following tasks:

1. Investigate whether GCC and clang can auto-vectorize these functions under different optimiza-
tion settings (O3, O2, O1). You can use https://godbolt.org for your analysis.

2. Implement a branch free version of count8 and count64.

3. Implement count8SIMD and count64SIMD version of the code using AVX-512 intrinsics 2.

4. Discuss how the branch free version and SIMD-vectorization change the performance of the al-
gorithm? Include the compiler flags and your performance numbers/profiling in the submission
file/report.

Part 2: Dictionary decompression

You are given an array with 4-bit dictionary compressed 32-bit integers. The code skeleton provided to
you has a function dictDecompress4to32 that decompresses the elements of the array. Your task
is to do the following:

1. Speed up the given code by creating a scalar version that loads 8 bytes at a time, instead of 1 byte.

2. Implement an AVX-512 version that uses the gather instruction for the dictionary look-up.

3. Implement an AVX-512 version that stores the dictionary in a SIMD register and uses permute
instead of gather.

4. Discuss the properties of the different versions of the code.
1https://gitlab.db.in.tum.de/dpmh-ss20/hw4
2https://software.intel.com/sites/landingpage/IntrinsicsGuide/#avx512

1

https://godbolt.org


Submission guidelines

This homework has a duration of one week. Fork the repository, commit your changes in the git, and
invite us (@dpmh) to hand in your homework.

The programming language of this homework is C++. We provide you a simple code skeleton, feel
free to add functions. For performance measuring of the experiments you can either use the provided
perfEvent.hpp and the commented code blocks or use the tools you applied in the previous assign-
ments.

2


