Data Processing on Modern Hardware
Assignment 4 — SIMD Vectorization

Handout: 3"¢ June 2020
Due: 10" June 2020 by 9am
Part 1: Aggregation

The following aggregation query counts the number of elements that are lower than 42. You can assume
that R is pre-populated with 100 million entries.

SELECT COUNT ()
FROM R
WHERE R.a < 42

Use the code skeleton provided in the gitlab repositor for two functions that implement the aggre-
gation query listed above (count 8 and count 64) to solve the following tasks:

1. Investigate whether GCC and clang can auto-vectorize these functions under different optimiza-
tion settings (03, 02, O1). You can use https://godbolt .org/for your analysis.

2. Implement a branch free version of count8 and count64.
3. Implement count8SIMD and count64SIMD version of the code using AVX-512 intrinsics ﬂ

4. Discuss how the branch free version and SIMD-vectorization change the performance of the al-
gorithm? Include the compiler flags and your performance numbers/profiling in the submission
file/report.

Part 2: Dictionary decompression

You are given an array with 4-bit dictionary compressed 32-bit integers. The code skeleton provided to
you has a function dictDecompress4to32 that decompresses the elements of the array. Your task
is to do the following:

1. Speed up the given code by creating a scalar version that loads 8 bytes at a time, instead of 1 byte.
2. Implement an AVX-512 version that uses the gather instruction for the dictionary look-up.

3. Implement an AVX-512 version that stores the dictionary in a SIMD register and uses permute
instead of gather.

4. Discuss the properties of the different versions of the code.

"https://gitlab.db.in.tum.de/dpmh-ss20/hw4
Zhttps://software.intel.com/sites/landingpage/IntrinsicsGuide/#avx512


https://godbolt.org

Submission guidelines

This homework has a duration of one week. Fork the repository, commit your changes in the git, and
invite us (@dpmh) to hand in your homework.

The programming language of this homework is C++. We provide you a simple code skeleton, feel
free to add functions. For performance measuring of the experiments you can either use the provided
perfEvent . hpp and the commented code blocks or use the tools you applied in the previous assign-
ments.



