IN2267 — Transaction Systems

Week 4: Snapshot Isolation Concurrency Control

Dr. Uwe R6hm
The University of Sydney

Learning Objectives

B Background
» Reprise: Concurrency Control Approaches
» Synchronization Problems & ANSI SQL Isolation Levels

B Optimistic Concurrency Control
» Snapshot Isolation
» Sl Implementation Details
» Serialisable Snapshot Isolation

B Qutlook
» Sl on multi-core CPUs

Based on USydney slides from U. Roehm and M. Cahill,
and Weikum/Vossen (2002) “Transactional Information Systems”

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 2

Concurrency Control

B The concurrency control of a DBMS is responsible for
enforcing serializability among concurrent transactions
» Two important techniques: Locking and Versioning

@ Note: In addition to serializable, DBMSs implement less
stringent isolation levels
» Serializable schedules correct for all applications

» Less stringent levels do not guarantee correctness for all
applications, but are correct for some

» Application programmer is responsible for choosing appropriate level

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

Transaction Scheduler

Client 1 Client 2 Client 3 Clients
Requests
. m........." Dat
Layers Sgrier
Transaction . Layer 4
Manager— .
(TM) 3 Layer 3
Data 2
Manage 1] Layer 2
(M) % Layer 1
Database

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

Potential Anomalies

B lost update (‘dirty write’):
updating a value that was already updated by a concurrent,
uncommitted transaction.

W dirty read:
reading a value that was updated by a concurrent,
uncommitted transaction

B non-repeatable read (‘fuzzy read’):
reading a value twice gives different results because of a
concurrent update by a different transaction in between

B phantom read:
using the same selection criteria on a table twice gives
different result sets, because a concurrent updater deleted
or inserted elements satisfying the selection criteria

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

ANSI SQL Isolation Levels

M Defined in terms of anomalies
» Anomaly prohibited at one level is also prohibited at all higher levels
» READ UNCOMMITTED: all anomalies possible
» READ COMMITTED: dirty read prohibited

» REPEATABLE READ: reads of individual tuples are repeatable (but
phantoms are possible)

» SERIALIZABLE: phantoms prohibited; transaction execution is
serializable

M Serializable is according to SQL standard the default...
» In practice, most systems have weaker default level! (Oracle!)

B Lower degrees of consistency useful for gathering
approximate information about the database, e.g., statistics
for query optimizer.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

Comparison of SQL Isolation Levels

Lost Update Dirty Read Unrepeatable Phantom

Read
READ UNCOMMITTED not possible possible possible possible
READ COMITTED not possible not possible possible possible
REPEATABLE READ not possible not possible not possible possible
SERIALIZABLE not possible not possible not possible not possible

Note: ANSI SQL Isolation Level SERIALIZABLE

1=
Definition in serialisability theory
(such as conflict serialisability)

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 9-7

Locks in Relational Databases

B DBMS guarantees that each SQL statement is isolated

B Early (non-strict) lock release used to implement levels
» Short-term locks - held for duration of single statement
» Long-term locks - held until transaction completes (strict)

m At all levels, transactions obtain long-term write locks

B This means for isolation levels:
» READ UNCOMMITTED - no read locks (dirty reads possible since
transaction can read a write-locked item)

» READ COMMITTED - short-term read locks on rows (non-repeatable
reads possible since transaction releases read lock after reading)

» REPEATABLE READ - long-term read locks on rows (phantoms
possible)

» SERIALIZABLE - combination of table, row, and index locks

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 8

Agenda

® Background
» Reprise: Concurrency Control Approaches
» Synchronization Problems & ANSI SQL Isolation Levels

B Optimistic Concurrency Control
» Snapshot Isolation
» Sl Implementation Details
» Serialisable Snapshot Isolation

B Qutlook
» Sl on multi-core CPUs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 9

Optimistic Concurrency Control

M Locking is a conservative approach in which conflicts are
prevented. Disadvantages:
» Lock management overhead.
» Deadlock detection/resolution.
» Lock contention for heavily used objects.

M |f conflicts are rare, we might be able to gain concurrency by
not locking, and instead checking for conflicts before
transactions commit.

» Optimistic, validating CC
» Multiversion CC

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 10

Snapshot Isolation — Conceptual Idea

M Every transaction reads from a consistent snapshot (copy)
of the database (the db state of when tx started)
B Writes are collected into a transaction’s writeset
» Writeset is not visible to concurrent transactions

B At commit time, the writeset is compared to the writesets of
all concurrent transactions.

» If they are disjoint (no overlap), then they are applied to the actual
database => commit

» If there’s an overlap with the writeset of a concurrent, but already
committed transaction, the later transaction must abort

= => “First Committer Wins” rule

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 9-11

In Practice: Snapshot Isolation (Sl)

B A multiversion concurrency control mechanism which was

described in SIGMOD ’95 by H. Berenson, P. Bernstein, J. Gray, J.
Melton, E. O’'Neil, P. O’Neil
» Incremental implementation of an optimistic concurrency control scheme

B Core Idea: Let writers create a “new” copy while readers use
an appropriate “old” copy.

Current VERSION
versions of POOL
DB objects (Older versions that

may be useful for
some active readers.)

<+ Readers are always allowed to proceed.
— But may be blocked until writer commits.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 12

Reads with Snapshot Isolation

B Multiversion database: The old value of an item is not
overwritten when it is updated (no ‘in-place updates’).
Instead, a new version is created

M Read of an item does not necessarily give latest value

M Instead, use old versions (kept with timestamps) to find
value that had been most recently committed at the time the
fransaction started

» Exception: if the txn has modified the item, use the value it wrote
itself

M The transaction sees a “snapshot” of the database, at an
earlier time
» Intuition: this should be consistent, if database was consistent before
» No read locks necessary: a transaction reads all values from latest
snapshot at time it started. Thus, read/only transactions do not wait.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 13

Writes with Snapshot Isolation

B A transaction T that has updated x can commit if no other
transaction that concurrrently updated x has committed
» “First-committer-wins” rule:

» Updater T will not be allowed to commit if any other transaction has
committed and installed a changed value for that item, between T's
start (snapshot) and T’s commit

» Similar to optimistic validation-based cc, but only write-sets are
checked
B T must hold X-lock on modified items at time of commit, to
install them. In practice, commit-duration X-locks may be set
when write executes. These help to allow conflicting
modifications to be detected (and T aborted) when T tries to
write the item, instead of waiting till T tries to commit.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 14

Benefits of Si

M Reading is never blocked, and also doesn’t block other
transactions’ activities
» Fast performance similar to Read Committed

B Avoids the usual anomalies
» No dirty read
» No lost update
» No inconsistent read
» Set-based selects are repeatable (no phantoms)

» Note: not Write-Skews — cf. later slides

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 15

Who does this?

B Oracle: used for “Isolation Level Serializable”

» But does not guarantee serializable execution as defined in standard
transaction management theory!

B PostgreSQL: used for “Isolation Level Serializable”
» As of version 9.1 guarantees serializable execution, but not earlier

B Available in Microsoft SQL Server 2005 and above as
“Isolation Level Snapshot”
» If mssql db is configured to provide snapshots

B Berkeley DB

® MySQL / InnoDB (sort of)

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 16

Agenda

® Background
» Reprise: Concurrency Control Approaches
» Synchronization Problems & ANSI SQL Isolation Levels

B Optimistic Concurrency Control
» Snapshot Isolation
» Sl Implementation Details
» Serialisable Snapshot Isolation

B Qutlook
» Sl on multi-core CPUs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 17

S| Design Choices

M Tuple Versions
» Store old versions or generate as required?

B Granularity
» should individual records be versioned, or pages?
» (or even tables?)

@ How is a snapshot represented?
(“what is time?”)

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 18

S| Common Themes

B Almost every implementation takes locks for updates
» This blocks other updates until commit / abort
» Guarantees forward progress
» Reduces conflict-abort-retry thrashing

B First-committer-wins implemented as “has a version been
committed since | started?”

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

19

PostgreSQL: Intro

B Full RDBMS, long history

B Provides Sl when you ask for REPEADABLE READ or
SERIALIZABLE

B Stores old versions of rows in the database
» Needs regular VACUUMing

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

20

pgsql: SnapshotData

33 typedef struct SnapshotData

34 ¢

35 SnapshotSatisfiesFunc satisfies; /* tuple test function */
36

37 /*

38 * The remaining fields are used only for MVCC snapshots, and are normally
39 * just zeroes in special snapshots. (But xmin and xmax are used

40 * specially by HeapTupleSatisfiesDirty.)

41 *

42 * An MVCC snapshot can never see the effects of XIDs >= xmax. It can see
43 * the effects of all older XIDs except those listed in the snapshot. Xmin
44 * is stored as an optimization to avoid needing to search the XID arrays
45 * for most tuples.

46 */

47 TransactionId xmin; /* all XID < xmin are visible to me */

48 TransactionId xmax; /* all XID >= xmax are invisible to me */

49 TransactionId *xip; /* array of xact IDs in progress */

50 uint32 xcnt; /* # of xact ids in xip[] */

51 /* note: all ids in xip[] satisfy xmin <= xip[i] < xmax */

52 int32 subxcnt; /* # of xact ids in subxip[], -1 if overflow */

53 TransactionId *subxip; /* array of subxact IDs in progress */
54

60 } SnapshotData; [src/include/utils/snapshot.h |

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 21

Pgsql: Tuple Visibility

[src/backend/utils/time/tqual.c |

327 # mao says 17 march 1993: the tests in this routine are correct;
328 % if you think they're not, you're wrong, and you should think

329 * about it again. 1 know, it happened to me. we don't need to
330 * check commit time against the start time of this transaction

331 * because 2ph locking protects us from doing the wrong thing.

332 * if you mess around here, you'll break serializability. the only
333 # problem with this code is that it does the wrong thing for system
334 # catalog updates, because the catalogs aren't subject to 2ph, so
335 % the serializability guarantees we provide don't extend to xacts
336 #* that do catalog accesses. this is unfortunate, but not critical
337 */

338 bool

339 HeapTupleSatisfiesNow(HeapTupleHeader tuple, Snapshot snapshot, Buffer buffer)
340 { .. }

M Tuple header defines a closed-open transaction-time interval
» Basic Idea: A Tuple is visible iff

» xmin is a committed transaction ID < own transaction ID and
not in-progress at transaction start.

» xmax is either blank, or greater than the start transaction ID and
in-progress at transaction start

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 22

Row Format in PostgreSQL

Row = RowHeader + NullBitmap + alignment padding + (OID) + RowData

<

D _ e
MZED

Header SEFlR Row Data
s | €

B RowHeader:
» 23 Bytes; cf. next slide
® NullBitmap
» variable len: either O (if all NOT NULL) or ((|Columns| + 7) / 8) Bytes
» one bit per attribute; 1 if NULL, O otherwise
B OID (PostgreSQL speciality as it supports objects)
» fix 4 Bytes (optional,depending whether table WITH OIDs or not)
B RowData = FixedColumns + VarColumns

= FixedColumns: directly stored & aligned!

= VarColumns = varattrib + userdata + aligned

 varattrib = 4 bytes length words including 2 bits for compression/TOAST flags
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 02adv-23

Row Format in PostgreSQL (cont’ d)

B Row Header structure
» 23 bytes (plus bitmap plus padding; cf. t_hoff value as ‘pointer’)

» Cf. src/include/access/htup.h:
typedef struct HeapTupleHeaderData

» Some information on visibility of a tuple for current transaction
snapshot or newer version (needed for snapshot isolation algorithm)

= t xmin Transactionld 4 bytes insert XID stamp

= t_xmax Transactionld 4 bytes delete XID stamp

m t cid Commandld 4 bytes insert CID stamp (actual a UNION struct)
t_ctid ItemPointerData 6 bytes current TID of this or newer row version
» How long is this row? Is it variable length? Does it have NULLs?

= t_natts int16 2 bytes number of attributes

= t_infomask uint16 2 bytes various flag bits
+ e.g. HAS_ NULL | HASVARWIDTH | HASOID | locks(!)
= t_hoff uint8 1 byte /* sizeof header incl. bitmap, padding */

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 02adv-24

pgSQL Sl: Tuple Visibility Example

Current Transaction ID: 100

Cre 30 Visible In-Progress Transactions: 25
Exp 50
Cre 30 Skip 75
Exp 80
Cre 30 Visible
Exp 110
Cre 30 Visible
Exp 75
Cre 50 Skip
Exp
Cre 110 Skip
Exp
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 25

InnoDB: Intro

B Transactional backend for MySQL
» MySQL supports different storage engines!

B Only needs to deal with read / writes of rows
» MySQL looks after SQL and query processing

B Generates old values on demand
» Uses “undo” records from the log

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 26

InnoDB: Concurrency Control

® MVCC but not Sl

» Read-only Transactions (pure queries) read from a snapshot

» Locking reads (including updates) read most recently committed
value

» No first-committer-wins rule

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

27

InnoDB: read_view

116 /* Read view lists the trx ids of those transactions for which a consistent

117
118

read should not see the modifications to the database. */

119 struct read_view_t{

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144);

trx_id_t low_limit_no; /* The view does not need to see the undo
logs for transactions whose transaction number
is strictly smaller (<) than this value: they
can be removed in purge if not needed by other
views ¥/
trx_id_t low_limit_id; /* The read should not see any transaction
with trx id >= this value; in other words, this is the “high water mark” */
trx_id_t up_limit_id; /* The read should see all trx ids which
are strictly smaller (<) than this value; this is the “low water mark” */
ulint n_trx_ids; /* Number of cells in the trx_ids array */
trx_id_t* trx_ids; /* Additional trx ids which the read should
not see: typically, these are the active
transactions at the time when the read is
serialized, except the reading transaction
itself; the trx ids in this array are in a
descending order */
trx_id_t creator_trx_id; /* trx id of creating transaction, or
(0, 0) used in purge */
UT_LIST_NODE_T(read_view_t) view_list;
/* List of read views in trx_sys */

[storage/innobase/include/readOread.h
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

28

InnoDB: read old versions

438 [* Constructs the version of a clustered index record which a consistent
439 read should see. We assume that the trx id stored in rec is such that
440 the consistent read should not see rec in its present version. */

442 ulint

443 row_vers_build_for_consistent_read(

444 7 %
445 /*out: DB_SUCCESS or DB_MISSING_HISTORY */
446 constrec_t* rec, /*in:record in a clustered index; */
454 read_view_t* view, /*in:the consistent read view ¥/
461 rec_t*™* old_vers) /*out, own: old version, or NULL if the
462 record does not exist in the view, that is,
463 it was freshly inserted afterwards */
464 {
488 for (;;) {
524 err = trx_undo_prev_version_build(rec, mtr, version, index, *offsets, heap, &prev_version);
535 if (prev_version == NULL) {
536 /* It was a freshly inserted version */
537 *old_vers = NULL;
538 err = DB_SUCCESS;
540 break;
541 }
546 trx_id = row_get_rec_trx_id(prev_version, index, *offsets);
547
548 if (read_view_sees_trx_id(view, trx_id)) {
556 err = DB_SUCCESS;
558 break;
559 }
560
561 version = prev_version;
562 Y*for(;) ¥/
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 29
| |
pgsgl and InnoDB: Lessons

B MVCC is used by default

» Has to work well under most conditions
® Old versions need space somewhere

» pgsql: in the database file

» InnoDB: undo records in the log buffer

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 30

Summary: Sl Design Space

BDB pgsql InnoDB
old store in store on |generate on
versions cache disk demand
granularity| page record record
transaction snapshot of snapshot of
. LSNs active active
time
txnlDs txnlDs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

31

Agenda

® Background
» Reprise: Concurrency Control Approaches

» Synchronization Problems & ANSI SQL Isolation Levels

B Optimistic Concurrency Control
» Snapshot Isolation
» Sl Implementation Details
» Serialisable Snapshot Isolation

B Qutlook
» Sl on multi-core CPUs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

32

Problem with SI:
Snapshot Isolation # Serializable

Inherent constraint: for every date, there is
at least 1 doctor on duty

Invariant violated!

Shift Status
| 12 June | reserve

Doctor

House

Doctor Shift Status
House |12 June |on duty
Grey 12 June |on duty

Oops...

Doctor Shift Status

T2

Grey 12 June |reserve

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 33

Write Skew

B Formally this is known as Write Skew Problem

» Sl breaks serializability when transactions modify different items,
each based on a previous state of the item the other modified

» This is fairly rare in practice

= Eg the TPC-C benchmark runs correctly under Sl:
when transactions conflict due to modifying different data, there is also a
shared item they both modify too (like a total quantity) so Sl will abort
one of them

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 34

Vendor Advice

W Oracle: “Database inconsistencies can result unless
such application-level consistency checks are coded

with this in mind, even when using serializable
. V4
transactions.

B “PostgreSQL's Serializable mode does not guarantee
serializable execution...”

» FIXED since PostgreSQL 9.1!!!

B SQL Server: only gives performance advices, but
keeps quiet on the correctness issue...

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

Serializable Si

B Theory exists about how write-skews can be detected

» A. Fekete, D. Liarokapis, E. O'Neil, P. O’Neil, D. Shasha in TODS2005:
“Making Snapshot Isolation Serializable”

= Analyze the graph of transaction conflicts

= Conditions on the graph for application to be serializable at SlI; def. of dangerous structure

M Solution: Two Approaches

» Introduce artificial ww-conflicts to application to trigger first-
committer-wins rule

= Requires semantic program analysis before -> NP Hard

» Modify SI CC to identify ‘dangerous patterns’ in concurrent
snhapshot transactions and abort one of them
= false positives are possible
= PhD thesis of Michael Cahill at U Sydney [SIGMOD2008]

= Fortunately, we now have a system that implements this >
PostgreSQL-9.1

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

Dangerous Structures => S| Anomalies

[Fekete et al.,, TODS2005]

Sl Serialisability Test:
Build the static dependency graph,
then check for any “dangerous structures®

cycle

incoming conflict pivot outgoing conflict

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 37

Limitations of This Approach

B Determining the conflict graph is non-trivial

B Repeat for every change to the application

® Ad hoc queries not supported

® Difficult to automate: reasoning required to avoid false
positives

B What to do with the outcome?

» Standard approach as of 2005 was that the applications needed to
get changed, e.g. by introducing artificial writes to ‘promote’ a rw-
dependency to a ww-dependency

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 38

“Online” SSI Approach

[Cahill, SIGMOD2008]

® New algorithm for serializable isolation

» Online, dynamic

» Modifications to standard Snapshot Isolation
® Core ldea:

» Detect read-write conflicts at runtime

» Abort transactions with consecutive rw-edges

» Don’t do full cycle detection

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 39

S| Anomalies: a Simple Case

b1 f=— wi(y) wi1(z) = c1 DbN }= rN(x) rN(z) —= cN
-+ /

S o /

Tl ¥
b0 |= ro(y) wO(x) >| c0

pivot commits last

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 40

The Algorithm in a Nutshell

® Add two flags to each transaction (in & out)
® Set TO.out if rw-conflict TO = T1
W Set TO.in if rw-conflict TN = TO

m Abort TO (the pivot) if both TO.in and TO.out are set

» If TO has already committed, abort the conflicting transaction

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 41

Detection: Write before Read

b1 fe— wi(y) ——={ c1
‘\\

b0 | ro(y) —| c0

read old y '
T1.in = true

T10.out = true

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 42

Detection: Read before Write

e

lock x, SIREAD
How can we

bN fe—— rN(\x) detect this?

N

b0 |=

>| cO

write lock x
TN.out = true
T0.in = true

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

43

Main Disadvantage: False Positives

no cycle

Y

bN |« rN(x) rN(z) —={ cN b1 If'w1 (y) wi(z) —={ ct

~ -
~ -
~

e
b0 |< 0(y) WO(X))¢

unnecessary J
abort

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

44

SSI Variants

W SSI:
Original SIGMODO8 paper (and more detailed in TODS2009)

M Precise Serialisable Snapshot Isolation (PSSI)
» Revilak et al in ICDE 2011
» In essence a full serialization graph test on top of Cahill’'s SSI

B Revilak’'s ICDE2011 paper also did their own implementation
of TODS2009 algorithm in InnoDB -> referred to as ESSI

B PostgreSQL implementation of SSI by D. Ports (VLDB2012)

» Including some optimisations for read-only transactions which do
not need to take SIREAD locks on a safe snapshot

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 45

Design Decisions for SSI

M Local versus Global Dependency Tracking

» anti-dependencies tracked per transaction or in a separate global
data structure?

B Approximate versus accurate serialisability check
» Check only for a dangerous structure, or perform a full cycle test?

B Ongoing checks versus commit-time check
» check for potential abort with each update operation or at commit?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 46

Previous Work on SSI

ssl ESSI PSSI pgSSI
[Cahil, SIGMOD08] [Revilak, ICDE11; [Revilak, ICDE11] [Ports, VLDB12]
Cahill, TODS09]
Tracking local local global local
Data two Bits two Pointers cycle testing two Lists
Structure per transact. per transact. Graph (CTG) per transact.
dangerous dangerous cvcle test dangerous
Check structure structure structure
(using CTG)
When each update at commit at commit each update
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 47

SSl in PostgreSQL 9.1

[Ports, VLDB2012]
M Basically follows Cahill’s approach

B Some additional optimisations:
» Identify ‘safe snapshot’ situations for read-only transactions

» If a read-only tx is found to run on a safe snapshot, will never abort
and does not need to take and SIREAD locks (less overhead)

» For long running transactions (e.g. backup):

= Allow DBA to delay them until they are guaranteed to run on a safe
snapshot

B Fully integrated into DBMS

» Needed a bit more complex code than Michael’s prototype ;)

B [SOLATION LEVEL SERIALISABLE is now SSI
B |[SOLATION LEVEL REPEADABLE READ is the former Sl
B Default isolation level is still read committed...

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 48

Performance Penalty for Correctness?

® Obviously, tracking dependencies and aborting transactions
(some of them false aborts) doesn’t come for free

B What are the costs for being correct?

'q;) 1.0x

s 09x

:

g 0.8x

Q

s 0.7x

=

o

3 —e— SSI

2 0.5x F —v— SSI(nor/oopt.) -
= —*— S2PL

B 04x ' ' : '

0% 20% 40% 60% 80% 100%

Fraction of read-only transactions
psql 9.1 with TPC-C, in-memory configuration (25 warehouses) [VLDB2012]

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

Research Question

Is SSI still as fast on a multicore server?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

The Price of Serialisability

B MySQL 5.1.3 with InnoDB on 24 core Xeon Server
» Implemented SSI, ESSI and PSSI in same engine (Linux)
» quantified overhead at ca. 10%

mSI “ESSI mSSI mPSSI

1 5 10 15 20 30
MPL

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

Scalability with Number of Cores?

® The previous figure was for just a single core server
» with a (75%-R0O-25%-RU) workload

B What happens if we enable all 24 cores of the server?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm)

The Big Picture

mSI “ESSI mSSI mPSSI

= 700
S 600
S‘ 500
&
= 400

300
@
E 200
= 100

0 -
1 5 10 15 20 30
MPL
On 24 cores with a (75%-R0-25%-RU) workload
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 53
Transaction Runtimes
Read-Only Transactions Update Transactions

mSI ©“ESSI mSSI mPSSI mSI “ESSI mSSI mPSSI

[N
[

I

W
]

[y
(—]

Tx time (ms)
S

(=
|

1 5 10 15 20 30 1 5 10 15 20 30
MPL MPL

Transaction runtimes increase massively with MPL on 24 cores.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 54

Same Picture with Latest Postgres 9.2

mS| = pgSS

250
S 200
o
— -
X 150 — _
=
E 100 = -
e

0 - = 1 1 1 I I
1 8 16 32 64 128
MPL (32 cores/4 dies)

On 32 cores with a (75%-R0-25%-RU) workload

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 55
Why?
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 56

Profiled Execution Times

MySQL = Mutex = Kernel

100%
90%
80%
70%
60%
S50%
40%
30%
20%
10%

0%

15 10‘15‘2030
PSSI

1 ‘ 5 ‘10‘15‘20‘30
SSI

1 ‘ 5 ‘10‘152030
ESSI

1 ‘ 5 ‘10‘152030
SI

MPL

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 57

Reason: Mutex Contention

B More and more time is spend just waiting
B In order to avoid race conditions...

M ...but which 'race’ ?

B And it can get even worse:

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 58

“Readers Never Block”?

mSI “ESSI mSSI mPSSI
1200

1000

oo
=
(=

Txns/min (X1000)

1 5 10 15 20 30

MPL
Read-Only Workload on 24 cores

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 59

Solution: Using Latch-free Data

Structures for internal state of CC

M Latches are short-term locks (e.g. mutexes) that protect
critical code sections from race conditions
» E.g. only one thread is allowed to change the global transaction list

B Latch-Free Data Structures

» Allow concurrent r/w access to in-memory data structures using
atomic CPU operations such as Compare-And-Swap

» Pro: Non-blocking, no latches needed anymore

» Con: More complex; deletions require tombstones and some form of
later garbage collection

B Proof of Concept: SSI with MySQL

» Latch-free implementations of
= read-write conflict checks, and
= Consistent reads (read_view)

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 9-60

Performance Improvements
S-SSI

Txns/min (million)
N ©O N B O

w=p===] core === 4 cores 8 cores == 16 cores ==#==32 cores
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 9-61

B Transaction Management is the backbone of DBMSs

B Pessimistic Concurrency Control

» lock-based concurrency control schemes detect conflicts between
concurrent transactions by incompatible locks on data items

» Strict-2PL: Avoids cascading aborts, but deadlocks possible
» Deadlocks can either be prevented or detected.

B Optimistic Concurrency Control

» aims to minimize CC overheads in an "“optimistic” environment
where reads are common and writes are rare.

» Multiversion Timestamp CC is a variant which ensures that read-only
transactions are never restarted; they can always read a suitable
older version. Additional overhead of version maintenance.

» Snapshot Isolation as popular CC nowadays
= But does not guarantee serializable executions!

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 62

References

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, P. O'Neil in
SIGMOD1995: “A Critique of ANSI SQL Isolation Levels”

A. Bernstein, P. Lewis and S. Lu in ICDE2000:
“Semantic Conditions for Correctness at Different Isolation Levels”

A. Fekete, D. Liarokapis, E. O'Neil, P. O’Neil, D. Shasha in TODS2005:
“Making Snapshot Isolation Serializable”

M. Alomari, M. Cahill, A. Fekete, U. Rohm in ICDE2008:
“The Cost of Serializability on Platforms That Use Snapshot Isolation”

M. Cahill, U. Rohm and A. Fekete in SIGMOD2008:
“Serialisable Isolation for Snapshot Databases”

D. Ports and K. Grittner in VLDB2012:
“Serialisable Snapshot Isolation in PostgreSQL”

H. Jung, H. Han, A. Fekete, U. Rohm and H. Y. Yeom, DASFAA 2013:
“Performance of Serializable Snapshot Isolation on Multicore Servers”

H. Han, S. Park, H. Jung, A. Fekete, U. Rohm and H. Y. Yeom, ICDE2014:
“Scalable Serializable Snapshot Isolation for Multicore Systems”

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. R6hm) 63

