
Dr. Uwe Röhm
The University of Sydney

IN2267 – Transaction Systems
Week 4: Snapshot Isolation Concurrency Control

Learning Objectives
!  Background

! Reprise: Concurrency Control Approaches
! Synchronization Problems & ANSI SQL Isolation Levels

!  Optimistic Concurrency Control
! Snapshot Isolation
! SI Implementation Details
! Serialisable Snapshot Isolation

!  Outlook
! SI on multi-core CPUs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-2

Based on USydney slides from U. Roehm and M. Cahill,
and Weikum/Vossen (2002) “Transactional Information Systems”

2

Concurrency Control
!  The concurrency control of a DBMS is responsible for

enforcing serializability among concurrent transactions
! Two important techniques: Locking and Versioning

!  Note: In addition to serializable, DBMSs implement less
stringent isolation levels
! Serializable schedules correct for all applications
! Less stringent levels do not guarantee correctness for all

applications, but are correct for some
! Application programmer is responsible for choosing appropriate level

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-3 3

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 4

Transaction Scheduler

Database

Data
Server

Clients

Requests

 Layer 5

Layer 4

Layer 3

Layer 2

 Layer 1

Client 2 Client 1 Client 3

1

1

1

1

2

2

2

3
3

3
3

3

...

Data
Manager
(DM)

Transaction
Manager
(TM)

1

1

2

2
3

3

Potential Anomalies
!  lost update (‘dirty write’):

updating a value that was already updated by a concurrent,
uncommitted transaction.

!  dirty read:
reading a value that was updated by a concurrent,
uncommitted transaction

!  non-repeatable read (‘fuzzy read’):
reading a value twice gives different results because of a
concurrent update by a different transaction in between

!  phantom read:
using the same selection criteria on a table twice gives
different result sets, because a concurrent updater deleted
or inserted elements satisfying the selection criteria

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-5 5

ANSI SQL Isolation Levels
!  Defined in terms of anomalies

! Anomaly prohibited at one level is also prohibited at all higher levels
! READ UNCOMMITTED: all anomalies possible
! READ COMMITTED: dirty read prohibited
! REPEATABLE READ: reads of individual tuples are repeatable (but

phantoms are possible)
! SERIALIZABLE: phantoms prohibited; transaction execution is

serializable

!  Serializable is according to SQL standard the default…
!  In practice, most systems have weaker default level! (Oracle!)

!  Lower degrees of consistency useful for gathering
approximate information about the database, e.g., statistics
for query optimizer.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 6 6

Comparison of SQL Isolation Levels

Isolation Level Lost Update Dirty Read Unrepeatable
Read

Phantom

READ UNCOMMITTED not possible possible possible possible
READ COMITTED not possible not possible possible possible
REPEATABLE READ not possible not possible not possible possible
SERIALIZABLE not possible not possible not possible not possible

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-7

Note: ANSI SQL Isolation Level SERIALIZABLE
 !=

 Definition in serialisability theory
 (such as conflict serialisability)

Locks in Relational Databases
!  DBMS guarantees that each SQL statement is isolated
!  Early (non-strict) lock release used to implement levels

! Short-term locks - held for duration of single statement
! Long-term locks - held until transaction completes (strict)

!  At all levels, transactions obtain long-term write locks
!  This means for isolation levels:

! READ UNCOMMITTED - no read locks (dirty reads possible since
transaction can read a write-locked item)

! READ COMMITTED - short-term read locks on rows (non-repeatable
reads possible since transaction releases read lock after reading)

! REPEATABLE READ - long-term read locks on rows (phantoms
possible)

! SERIALIZABLE - combination of table, row, and index locks

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 09b-8 8

Agenda
!  Background

! Reprise: Concurrency Control Approaches
! Synchronization Problems & ANSI SQL Isolation Levels

!  Optimistic Concurrency Control

! Snapshot Isolation
! SI Implementation Details
! Serialisable Snapshot Isolation

!  Outlook
! SI on multi-core CPUs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-9 9

Optimistic Concurrency Control
!  Locking is a conservative approach in which conflicts are

prevented. Disadvantages:
! Lock management overhead.
! Deadlock detection/resolution.
! Lock contention for heavily used objects.

!  If conflicts are rare, we might be able to gain concurrency by
not locking, and instead checking for conflicts before
transactions commit.
! Optimistic, validating CC
! Multiversion CC

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-10 10

Snapshot Isolation – Conceptual Idea
!  Every transaction reads from a consistent snapshot (copy)

of the database (the db state of when tx started)
!  Writes are collected into a transaction’s writeset

! Writeset is not visible to concurrent transactions

!  At commit time, the writeset is compared to the writesets of
all concurrent transactions.
!  If they are disjoint (no overlap), then they are applied to the actual

database => commit
!  If there’s an overlap with the writeset of a concurrent, but already

committed transaction, the later transaction must abort
!  => “First Committer Wins” rule

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-11

In Practice: Snapshot Isolation (SI)
!  A multiversion concurrency control mechanism which was

described in SIGMOD ’95 by H. Berenson, P. Bernstein, J. Gray, J.
Melton, E. O’Neil, P. O’Neil
!  Incremental implementation of an optimistic concurrency control scheme

!  Core Idea: Let writers create a “new” copy while readers use
an appropriate “old” copy.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-12 12

O O’

O’’

Current
versions of
DB objects

VERSION
POOL
(Older versions that
may be useful for
some active readers.)

❖  Readers are always allowed to proceed.
–  But may be blocked until writer commits.

Reads with Snapshot Isolation
!  Multiversion database: The old value of an item is not

overwritten when it is updated (no ‘in-place updates’).
Instead, a new version is created

!  Read of an item does not necessarily give latest value
!  Instead, use old versions (kept with timestamps) to find

value that had been most recently committed at the time the
transaction started
! Exception: if the txn has modified the item, use the value it wrote

itself

!  The transaction sees a “snapshot” of the database, at an
earlier time
!  Intuition: this should be consistent, if database was consistent before
! No read locks necessary: a transaction reads all values from latest

snapshot at time it started. Thus, read/only transactions do not wait.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-13 13

Writes with Snapshot Isolation
!  A transaction T that has updated x can commit if no other

transaction that concurrrently updated x has committed
! �First-committer-wins� rule:
! Updater T will not be allowed to commit if any other transaction has

committed and installed a changed value for that item, between T’s
start (snapshot) and T’s commit

! Similar to optimistic validation-based cc, but only write-sets are
checked

!  T must hold X-lock on modified items at time of commit, to
install them. In practice, commit-duration X-locks may be set
when write executes. These help to allow conflicting
modifications to be detected (and T aborted) when T tries to
write the item, instead of waiting till T tries to commit.

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-14 14

Benefits of SI
!  Reading is never blocked, and also doesn’t block other

transactions’ activities
! Fast performance similar to Read Committed

!  Avoids the usual anomalies
! No dirty read
! No lost update
! No inconsistent read
! Set-based selects are repeatable (no phantoms)

! Note: not Write-Skews – cf. later slides

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-15 15

Who does this?
!  Oracle: used for “Isolation Level Serializable”

! But does not guarantee serializable execution as defined in standard
transaction management theory!

!  PostgreSQL: used for “Isolation Level Serializable”
! As of version 9.1 guarantees serializable execution, but not earlier

!  Available in Microsoft SQL Server 2005 and above as
“Isolation Level Snapshot”
!  If mssql db is configured to provide snapshots

!  Berkeley DB

!  MySQL / InnoDB (sort of)
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 16

Agenda
!  Background

! Reprise: Concurrency Control Approaches
! Synchronization Problems & ANSI SQL Isolation Levels

!  Optimistic Concurrency Control

! Snapshot Isolation
! SI Implementation Details
! Serialisable Snapshot Isolation

!  Outlook
! SI on multi-core CPUs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 17

SI Design Choices
!  Tuple Versions

! Store old versions or generate as required?

!  Granularity
! should individual records be versioned, or pages?
! (or even tables?)

!  How is a snapshot represented?
(“what is time?”)

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 18

SI Common Themes
!  Almost every implementation takes locks for updates

! This blocks other updates until commit / abort
! Guarantees forward progress
! Reduces conflict-abort-retry thrashing

!  First-committer-wins implemented as “has a version been
committed since I started?”

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 19

PostgreSQL: Intro
!  Full RDBMS, long history
!  Provides SI when you ask for REPEADABLE READ or

SERIALIZABLE
!  Stores old versions of rows in the database

! Needs regular VACUUMing

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 20

pgsql: SnapshotData
33 typedef struct SnapshotData  
34 {  
35 SnapshotSatisfiesFunc satisfies; /* tuple test function */  
36  
37 /*  
38 * The remaining fields are used only for MVCC snapshots, and are normally 
39 * just zeroes in special snapshots. (But xmin and xmax are used  
40 * specially by HeapTupleSatisfiesDirty.)  
41 *  
42 * An MVCC snapshot can never see the effects of XIDs >= xmax. It can see  
43 * the effects of all older XIDs except those listed in the snapshot. Xmin  
44 * is stored as an optimization to avoid needing to search the XID arrays  
45 * for most tuples.  
46 */  
47 TransactionId xmin; /* all XID < xmin are visible to me */  
48 TransactionId xmax; /* all XID >= xmax are invisible to me */  
49 TransactionId *xip; /* array of xact IDs in progress */  
50 uint32 xcnt; /* # of xact ids in xip[] */  
51 /* note: all ids in xip[] satisfy xmin <= xip[i] < xmax */  
52 int32 subxcnt; /* # of xact ids in subxip[], -1 if overflow */  
53 TransactionId *subxip; /* array of subxact IDs in progress */  
54  
…  
60 } SnapshotData; #
#

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 21

[src/include/utils/snapshot.h]

Pgsql: Tuple Visibility
327 * mao says 17 march 1993: the tests in this routine are correct; 
328 * if you think they're not, you're wrong, and you should think 
329 * about it again. i know, it happened to me. we don't need to 
330 * check commit time against the start time of this transaction 
331 * because 2ph locking protects us from doing the wrong thing. 
332 * if you mess around here, you'll break serializability. the only  
333 * problem with this code is that it does the wrong thing for system 
334 * catalog updates, because the catalogs aren't subject to 2ph, so 
335 * the serializability guarantees we provide don't extend to xacts  
336 * that do catalog accesses. this is unfortunate, but not critical  
337 */  
338 bool  
339 HeapTupleSatisfiesNow(HeapTupleHeader tuple, Snapshot snapshot, Buffer buffer)  
340 { … }#

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 22

!  Tuple header defines a closed-open transaction-time interval
! Basic Idea: A Tuple is visible iff

! xmin is a committed transaction ID < own transaction ID and
not in-progress at transaction start.

! xmax is either blank, or greater than the start transaction ID and
in-progress at transaction start

[src/backend/utils/time/tqual.c]

Row Format in PostgreSQL
Row = RowHeader + NullBitmap + alignment padding + (OID) + RowData

!  RowHeader:
! 23 Bytes; cf. next slide

!  NullBitmap
! variable len: either 0 (if all NOT NULL) or ((|Columns| + 7) / 8) Bytes
! one bit per attribute; 1 if NULL, 0 otherwise

!  OID (PostgreSQL speciality as it supports objects)
!  fix 4 Bytes (optional,depending whether table WITH OIDs or not)

!  RowData = FixedColumns + VarColumns
!  FixedColumns: directly stored & aligned!
!  VarColumns = varattrib + userdata + aligned

•  varattrib = 4 bytes length words including 2 bits for compression/TOAST flags
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 02adv-23

Header

N
ull

B
itm

ap

align…

O
ID

 (opt.)

Row Data

Row Format in PostgreSQL (cont�d)

!  Row Header structure
! 23 bytes (plus bitmap plus padding; cf. t_hoff value as �pointer�)
! Cf. src/include/access/htup.h: 
typedef struct HeapTupleHeaderData#

! Some information on visibility of a tuple for current transaction
snapshot or newer version (needed for snapshot isolation algorithm)
!  t_xmin TransactionId 4 bytes insert XID stamp
!  t_xmax TransactionId 4 bytes delete XID stamp
!  t_cid CommandId 4 bytes insert CID stamp (actual a UNION struct)
!  t_ctid ItemPointerData 6 bytes current TID of this or newer row version

! How long is this row? Is it variable length? Does it have NULLs?
!  t_natts int16 2 bytes number of attributes
!  t_infomask uint16 2 bytes various flag bits

•  e.g. HAS_NULL | HASVARWIDTH | HASOID | locks(!)
!  t_hoff uint8 1 byte /* sizeof header incl. bitmap, padding */

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 02adv-24

pgSQL SI: Tuple Visibility Example

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 25

Current Transaction ID :
100

Transaction in progress

at that time : 25, 50, 75

 Cre 30
 Exp
 Cre 30
 Exp 80
 Cre 30
 Exp 110
 Cre 30
 Exp 75
 Cre 50
 Exp
 Cre 110
 Exp

Visible

Visible

Visible

Skip

Skip

Skip

Current Transaction ID: 100

In-Progress Transactions: 25
 50
 75

InnoDB: Intro
!  Transactional backend for MySQL

! MySQL supports different storage engines!

!  Only needs to deal with read / writes of rows
! MySQL looks after SQL and query processing

!  Generates old values on demand
! Uses “undo” records from the log

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 26

InnoDB: Concurrency Control
!  MVCC but not SI

! Read-only Transactions (pure queries) read from a snapshot
! Locking reads (including updates) read most recently committed

value
! No first-committer-wins rule

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 27

InnoDB: read_view
116 /* Read view lists the trx ids of those transactions for which a consistent
117 read should not see the modifications to the database. */
118
119 struct read_view_t{
…
124 trx_id_t low_limit_no; /* The view does not need to see the undo
125 logs for transactions whose transaction number
126 is strictly smaller (<) than this value: they
127 can be removed in purge if not needed by other
128 views */
129 trx_id_t low_limit_id; /* The read should not see any transaction
130 with trx id >= this value; in other words, this is the “high water mark” */
131 trx_id_t up_limit_id; /* The read should see all trx ids which
132 are strictly smaller (<) than this value; this is the “low water mark” */
133 ulint n_trx_ids; /* Number of cells in the trx_ids array */
134 trx_id_t* trx_ids; /* Additional trx ids which the read should
135 not see: typically, these are the active
136 transactions at the time when the read is
137 serialized, except the reading transaction
138 itself; the trx ids in this array are in a
139 descending order */
140 trx_id_t creator_trx_id; /* trx id of creating transaction, or
141 (0, 0) used in purge */
142 UT_LIST_NODE_T(read_view_t) view_list;
143 /* List of read views in trx_sys */
144 };
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 28

[storage/innobase/include/read0read.h]

InnoDB: read old versions
438 /* Constructs the version of a clustered index record which a consistent
439 read should see. We assume that the trx id stored in rec is such that
440 the consistent read should not see rec in its present version. */
442 ulint
443 row_vers_build_for_consistent_read(
444 /*===============================*/
445 /* out: DB_SUCCESS or DB_MISSING_HISTORY */
446 const rec_t* rec, /* in: record in a clustered index; */
454 read_view_t* view, /* in: the consistent read view */
461 rec_t** old_vers) /* out, own: old version, or NULL if the
462 record does not exist in the view, that is,
463 it was freshly inserted afterwards */
464 {
…
488 for (;;) {
…
524 err = trx_undo_prev_version_build(rec, mtr, version, index, *offsets, heap, &prev_version);
…
535 if (prev_version == NULL) {
536 /* It was a freshly inserted version */
537 *old_vers = NULL;
538 err = DB_SUCCESS;
540 break;
541 }
…
546 trx_id = row_get_rec_trx_id(prev_version, index, *offsets);
547
548 if (read_view_sees_trx_id(view, trx_id)) {
…
556 err = DB_SUCCESS;
558 break;
559 }
560
561 version = prev_version;
562 }/* for (;;) */
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 29

pgsql and InnoDB: Lessons
!  MVCC is used by default

! Has to work well under most conditions

!  Old versions need space somewhere
! pgsql: in the database file
!  InnoDB: undo records in the log buffer

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 30

Summary: SI Design Space

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 31

Agenda
!  Background

! Reprise: Concurrency Control Approaches
! Synchronization Problems & ANSI SQL Isolation Levels

!  Optimistic Concurrency Control

! Snapshot Isolation
! SI Implementation Details
! Serialisable Snapshot Isolation

!  Outlook
! SI on multi-core CPUs

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 32

Problem with SI:
Snapshot Isolation ≠ Serializable

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-33

Doctor Shift Status
House 12 June on duty
Grey 12 June on duty

Doctor Shift Status
House 12 June on duty
Grey 12 June reserve

Doctor Shift Status
House 12 June reserve
Grey 12 June on duty

T1

T2

Inherent constraint: for every date, there is
at least 1 doctor on duty

Oops…

Invariant violated!

33

Write Skew
!  Formally this is known as Write Skew Problem

! SI breaks serializability when transactions modify different items,
each based on a previous state of the item the other modified

! This is fairly rare in practice
!  Eg the TPC-C benchmark runs correctly under SI:

when transactions conflict due to modifying different data, there is also a
shared item they both modify too (like a total quantity) so SI will abort
one of them

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-34 34

Vendor Advice

! Oracle: “Database inconsistencies can result unless
such application-level consistency checks are coded
with this in mind, even when using serializable
transactions.�

! “PostgreSQL's Serializable mode does not guarantee
serializable execution...�
!  FIXED since PostgreSQL 9.1!!!

! SQL Server: only gives performance advices, but
keeps quiet on the correctness issue...

35 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 35

Serializable SI
!  Theory exists about how write-skews can be detected

!  A. Fekete, D. Liarokapis, E. O'Neil, P. O’Neil, D. Shasha in TODS2005:
“Making Snapshot Isolation Serializable”

!  Analyze the graph of transaction conflicts
!  Conditions on the graph for application to be serializable at SI; def. of dangerous structure

!  Solution: Two Approaches
!  Introduce artificial ww-conflicts to application to trigger first-

committer-wins rule
!  Requires semantic program analysis before -> NP Hard

! Modify SI CC to identify �dangerous patterns� in concurrent
snapshot transactions and abort one of them
!  false positives are possible
!  PhD thesis of Michael Cahill at U Sydney [SIGMOD2008]
!  Fortunately, we now have a system that implements this "

PostgreSQL-9.1

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-36 36

Dangerous Structures => SI Anomalies

37

T1 T2
rw(y)

rw(x)

Figure 2: Serialization graph for transactions ex-
hibiting write skew

SI was introduced in the research literature in [3], and it
has been implemented by the Oracle RDBMS, PostgreSQL,
SQL Server 2005, and Oracle Berkeley DB. It provides signif-
icant performance improvements over serializability imple-
mented with two-phase locking (S2PL) and it avoids many
of the well-known isolation anomalies such as Lost Update
or Inconsistent Read. In some systems that do not imple-
ment S2PL, including the Oracle RDBMS and PostgreSQL,
SI is provided when serializable isolation is requested.

2.2 Write Skew
As noted in [3], SI does not guarantee that all executions

will be serializable, and it can allow corruption of the data
through interleaving between concurrent transactions which
individually preserve the consistency of the data. Here is an
execution that can occur under SI:

r1(x=50,y=50) r2(x=50,y=50) w1(x=-20) w2(y=-30) c1 c2

This sequence of operations represents an interleaving of
two transactions, T1 and T2, withdrawing money from bank
accounts x and y, respectively. Each of the transactions be-
gins when the accounts each contain $50, and each trans-
action in isolation maintains the constraint that x + y > 0.
However, the interleaving results in x + y = �50, so consis-
tency has been violated. This type of anomaly is called a
write skew.

We can understand these situations using a multiversion
serialization graph (MVSG). There are a number of defini-
tions of this in the literature, because the general case is
made complicated by uncertainty over the order of versions
(which indeed renders it NP-Hard to check for serializability
of a multiversion schedule). For example, there are defini-
tions in [5, 12, 17, 1].

With snapshot isolation, the definitions of the serializa-
tion graph become much simpler, as versions of an item
x are ordered according to the temporal sequence of the
transactions that created those versions (note that First-
Committer-Wins ensures that among two transactions that
produce versions of x, one will commit before the other
starts). In the MVSG, we put an edge from one commit-
ted transaction T1 to another committed transaction T2 in
the following situations: T1 produces a version of x, and T2
produces a later version of x (this is a ww-dependency); T1
produces a version of x, and T2 reads this (or a later) version
of x (this is a wr-dependency); T1 reads a version of x, and
T2 produces a later version of x (this is a rw-dependency).
In Figure 2 we show the MVSG for the history with write
skew, discussed above. In drawing our MVSG, we will fol-
low the notation introduced in [1], and use a dashed edge to
indicate a rw-dependency.

TN

T0

rw(y) T1rw(x)

Figure 3: Generalized dangerous structure in the
MVSG

As usual in transaction theory, the absence of a cycle in
the MVSG proves that the history is serializable. Thus it
becomes important to understand what sorts of MVSG can
occur in histories of a system using SI for concurrency con-
trol. Adya [1] showed that any cycle produced by SI has
two rw-dependency edges. This was extended by Fekete
et al in [9], which showed that any cycle must have two
rw-dependency edges that occur consecutively, and further,
each of these edges is between two concurrent transactions.

We adopt some terminology from [9], and call an rw-
dependency between concurrent transactions a vulnerable
edge; we call the situation where two consecutive vulnerable
edges occur in a cycle as a dangerous structure. It is illus-
trated in Fig 3. We refer to the transaction at the junction
of the two consecutive vulnerable edges as a pivot transac-
tion. The theory of [9] shows that there is a pivot in any
non-serializable execution allowed by SI.

We take an interesting example from [10] to illustrate how
a dangerous structure may occur at runtime. Consider the
following three transactions:

T0: r(y) w(x)

T1: w(y) w(z)

TN: r(x) r(z)

These three transactions can interleave such that TN, a
read-only transaction, sees a state that could never have
existed in the database had T0 and T1 executed serially. If
TN is omitted, T0 and T1 are serializable because there is
only a single anti-dependency from T0 to T1.

Two of the possible non-serializable interleavings of these
three transactions are illustrated in Figure 4. These dia-
grams should be read from left to right; the arrows indicate
the rw-dependencies between transactions. In Figure 4(a),
both reads occur after the writes. In Figure 4(b), TN reads
x before it is written by T0.

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1 rN(x) rN(z)bN cN

(a) Pivot commits last

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1 rN(x) rN(z)bN cN

(b) Reader commits last

Figure 4: SI anomalies at runtime

incoming conflict outgoing conflict

cycle

pivot

SI Serialisability Test:
Build the static dependency graph,
then check for any “dangerous structures“

[Fekete et al., TODS2005]

37 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

Limitations of This Approach
!  Determining the conflict graph is non-trivial
!  Repeat for every change to the application
!  Ad hoc queries not supported
!  Difficult to automate: reasoning required to avoid false

positives
!  What to do with the outcome?

! Standard approach as of 2005 was that the applications needed to
get changed, e.g. by introducing artificial writes to ‘promote’ a rw-
dependency to a ww-dependency

38 38 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

“Online” SSI Approach
!  New algorithm for serializable isolation

! Online, dynamic
! Modifications to standard Snapshot Isolation

!  Core Idea:
! Detect read-write conflicts at runtime
! Abort transactions with consecutive rw-edges
! Don’t do full cycle detection

39

[Cahill, SIGMOD2008]

39 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

SI Anomalies: a Simple Case

40

T1 T2
rw(y)

rw(x)

Figure 2: Serialization graph for transactions ex-
hibiting write skew

SI was introduced in the research literature in [3], and it
has been implemented by the Oracle RDBMS, PostgreSQL,
SQL Server 2005, and Oracle Berkeley DB. It provides signif-
icant performance improvements over serializability imple-
mented with two-phase locking (S2PL) and it avoids many
of the well-known isolation anomalies such as Lost Update
or Inconsistent Read. In some systems that do not imple-
ment S2PL, including the Oracle RDBMS and PostgreSQL,
SI is provided when serializable isolation is requested.

2.2 Write Skew
As noted in [3], SI does not guarantee that all executions

will be serializable, and it can allow corruption of the data
through interleaving between concurrent transactions which
individually preserve the consistency of the data. Here is an
execution that can occur under SI:

r1(x=50,y=50) r2(x=50,y=50) w1(x=-20) w2(y=-30) c1 c2

This sequence of operations represents an interleaving of
two transactions, T1 and T2, withdrawing money from bank
accounts x and y, respectively. Each of the transactions be-
gins when the accounts each contain $50, and each trans-
action in isolation maintains the constraint that x + y > 0.
However, the interleaving results in x + y = �50, so consis-
tency has been violated. This type of anomaly is called a
write skew.

We can understand these situations using a multiversion
serialization graph (MVSG). There are a number of defini-
tions of this in the literature, because the general case is
made complicated by uncertainty over the order of versions
(which indeed renders it NP-Hard to check for serializability
of a multiversion schedule). For example, there are defini-
tions in [5, 12, 17, 1].

With snapshot isolation, the definitions of the serializa-
tion graph become much simpler, as versions of an item
x are ordered according to the temporal sequence of the
transactions that created those versions (note that First-
Committer-Wins ensures that among two transactions that
produce versions of x, one will commit before the other
starts). In the MVSG, we put an edge from one commit-
ted transaction T1 to another committed transaction T2 in
the following situations: T1 produces a version of x, and T2
produces a later version of x (this is a ww-dependency); T1
produces a version of x, and T2 reads this (or a later) version
of x (this is a wr-dependency); T1 reads a version of x, and
T2 produces a later version of x (this is a rw-dependency).
In Figure 2 we show the MVSG for the history with write
skew, discussed above. In drawing our MVSG, we will fol-
low the notation introduced in [1], and use a dashed edge to
indicate a rw-dependency.

TN

T0

rw(y) T1rw(x)

Figure 3: Generalized dangerous structure in the
MVSG

As usual in transaction theory, the absence of a cycle in
the MVSG proves that the history is serializable. Thus it
becomes important to understand what sorts of MVSG can
occur in histories of a system using SI for concurrency con-
trol. Adya [1] showed that any cycle produced by SI has
two rw-dependency edges. This was extended by Fekete
et al in [9], which showed that any cycle must have two
rw-dependency edges that occur consecutively, and further,
each of these edges is between two concurrent transactions.

We adopt some terminology from [9], and call an rw-
dependency between concurrent transactions a vulnerable
edge; we call the situation where two consecutive vulnerable
edges occur in a cycle as a dangerous structure. It is illus-
trated in Fig 3. We refer to the transaction at the junction
of the two consecutive vulnerable edges as a pivot transac-
tion. The theory of [9] shows that there is a pivot in any
non-serializable execution allowed by SI.

We take an interesting example from [10] to illustrate how
a dangerous structure may occur at runtime. Consider the
following three transactions:

T0: r(y) w(x)

T1: w(y) w(z)

TN: r(x) r(z)

These three transactions can interleave such that TN, a
read-only transaction, sees a state that could never have
existed in the database had T0 and T1 executed serially. If
TN is omitted, T0 and T1 are serializable because there is
only a single anti-dependency from T0 to T1.

Two of the possible non-serializable interleavings of these
three transactions are illustrated in Figure 4. These dia-
grams should be read from left to right; the arrows indicate
the rw-dependencies between transactions. In Figure 4(a),
both reads occur after the writes. In Figure 4(b), TN reads
x before it is written by T0.

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1 rN(x) rN(z)bN cN

(a) Pivot commits last

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1 rN(x) rN(z)bN cN

(b) Reader commits last

Figure 4: SI anomalies at runtime

pivot commits last

40 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

The Algorithm in a Nutshell
!  Add two flags to each transaction (in & out)

!  Set T0.out if rw-conflict T0 # T1

!  Set T0.in if rw-conflict TN # T0

!  Abort T0 (the pivot) if both T0.in and T0.out are set

!  If T0 has already committed, abort the conflicting transaction

41 41 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

Detection: Write before Read

42

read old y
T1.in = true
T0.out = true

b0 c0r0(y)

w1(y)b1 c1

42 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

Detection: Read before Write

43

lock x, SIREAD

write lock x
TN.out = true
T0.in = true

b0 c0w0(x)

rN(x)bN cN

How can we
detect this?

43 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

Main Disadvantage: False Positives

44

4. When finding a version of item x valid at some given
timestamp, we can e�ciently get the list of other ver-
sions of x that have later timestamps.

These assumptions are true for the initial target system
(Berkeley DB). We discuss in section 4.1 how to implement
the algorithm if these assumptions do not hold.

The concurrency control layer processes each operation as
shown in Figures 5 to 8. In each case, the processing includes
the usual processing of the operation by the SI protocol as
well as some extra steps. For simplicity, in this description
we do not show all the cases where we could check whether
to abort T because both T.inConflict and T.outConflict
hold; we have written the check once, in the commit(T) op-
eration, and beyond that we only show the extra cases where
an abort is done for a transaction that is not the pivot (be-
cause the pivot has already committed). In the implemen-
tation, we actually abort an active transaction T as soon as
any operation of T discovers that both T.inConflict and
T.outConflict are true. Likewise, conflicts are not recorded
against transactions that have already aborted or that will
abort due to both flags being set.

When a conflict between two transactions leads to both
conflict flags being set on either one, without loss of correct-
ness either transaction could be aborted in order to break the
cycle and ensure serializability. Our prototype implementa-
tion follows the algorithm as described above, and prefers
to abort the pivot (the transaction with both incoming and
outgoing edges) unless the pivot has already committed. If a
cycle contains two pivots, whichever is detected first will be
aborted. However, for some workloads, it may be preferable
to apply some other policy to the selection of which transac-
tion to abort, analogous to deadlock detection policies. For
example, aborting the younger of the two transactions may
increase the proportion of complex transactions running to
completion. We intend to explore this idea in future work.

For the Serializable SI algorithm, it is important that the
engine have access to information about transaction T (its
transaction record, including inConflict and outConflict, as
well as any SIREAD locks it obtained) even after T has
completed. This information must be kept as long as any
transaction U is active which overlaps T, that is, we can only
remove information about T after the end of every transac-
tion that had already started when T completed. In Sec-
tion 4 we describe how this information is managed in the
Berkeley DB implementation – in particular, how the space
allocated to transaction objects is reclaimed.

3.2 Correctness
The Serializable SI algorithm ensures that every execu-

tion is serializable, and thus that data integrity is preserved
(under the assumption that each transaction individually is
coded to maintain integrity). This subsection gives the out-
line of the argument that this is so. By Theorem 2.1 from
[9], which shows that in any non-serializable execution there
is a dangerous structure, we are done provided that we can
establish the following: whenever an execution contains a
dangerous structure (transactions TN, a pivot T0, and T1,
such that there is a rw-dependency from TN to T0 and TN is
concurrent with T0, and also there is a rw-dependency from
T0 to T1 and T0 is concurrent with T1), then one of the
transactions is aborted. In this situation, we must consider
the possibility that TN=T1, which is the classic example of
Write Skew.

Our algorithm has an invariant, that whenever the execu-
tion has a rw-dependency from T to U, and the transaction
record for both T and U exists, then T.outConflict and
U.inConflict are both set to true. By definition, the rw-
dependency comes from the existence of a read by T that
sees some version of x, and a write by U which creates a ver-
sion of x that is later in the version order than the version
read by T.

One of these operations (read(T, x) and write(U, x))
will happen first because the database engine will perform
some latching during their execution, and the other will hap-
pen later. The rw-dependency is present in the execution
once the second of these operations occurs. If this second
operation is read(T, x), then at the time that operation is
processed, there will already be the version of x created by U;
the pseudocode in Figure 6 shows that we explicitly set both
flags as required. On the other hand, if the write(U, x)
occurs after read(T, x), then at that time T will hold a
SIREAD lock on x, and the pseudocode in Figure 7 shows
that both flags are set.

Based on the invariant just described, we now must argue
that one of the transactions in any dangerous structure is
aborted. If both rw-dependencies exist at the time the pivot
T0 completes, then the code in Figure 8 will notice that
T.inConflict and T.outConflict are set (because of the
invariant), and so T will be aborted when it requests to
commit. If, however, one or both rw-dependencies appears
after the pivot has committed, then we look at the first event
in which both dependencies are true; in the pseudocode for
this event, the flag for the other dependency will already
be set in T2’s transaction record, and so the transaction
executing this event will be aborted.

In summary, the argument for correctness is as follows:

1. Non-serializable executions under SI consist of a cycle
including two consecutive rw-dependencies.

2. Our algorithm detects every rw-dependency.

3. When two consecutive rw-dependencies are detected,
at least one transaction is aborted which breaks the
cycle.

The exhaustive testing of the implementation that we de-
scribe below in Section 4.2 further supports this argument
for the algorithm’s correctness.

3.3 False positives
Our algorithm uses a conservative approximation to cycle

detection in the graph of transaction conflicts, and as such
may cause some benign transactions to abort.

In particular, the interleaving of transactions in Figure 9
will set outConflict on T0 when it executes w0(x) and finds
the SIREAD lock from TN. Then inConflict will be set on
T0 when T1 executes w1(y) and finds T0’s SIREAD lock.
During the commit of T0, the two flags will be checked and
since both are set, T0 will abort. However, this interleaving

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1rN(x) rN(z)bN cN

Figure 9: False positive: no path from T1 to TN

no cycle

unnecessary
abort

44 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

SSI Variants
!  SSI:

Original SIGMOD08 paper (and more detailed in TODS2009)

!  Precise Serialisable Snapshot Isolation (PSSI)
! Revilak et al in ICDE 2011
!  In essence a full serialization graph test on top of Cahill’s SSI

!  Revilak’s ICDE2011 paper also did their own implementation
of TODS2009 algorithm in InnoDB -> referred to as ESSI

!  PostgreSQL implementation of SSI by D. Ports (VLDB2012)
!  Including some optimisations for read-only transactions which do

not need to take SIREAD locks on a safe snapshot

45 45 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

Design Decisions for SSI
!  Local versus Global Dependency Tracking

! anti-dependencies tracked per transaction or in a separate global
data structure?

!  Approximate versus accurate serialisability check
! Check only for a dangerous structure, or perform a full cycle test?

!  Ongoing checks versus commit-time check
! check for potential abort with each update operation or at commit?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 46

Previous Work on SSI

47

SSI
[Cahill,SIGMOD08]�

ESSI
[Revilak, ICDE11;�
�Cahill, TODS09]�

PSSI
[Revilak, ICDE11]�

pgSSI
[Ports, VLDB12]�

Tracking� local� local� global� local�

Data
Structure�

two Bits
per transact.�

two Pointers
per transact.�

cycle testing
Graph (CTG)�

two Lists
per transact.�

Check�
dangerous
structure
�

dangerous
structure

(using CTG)�

cycle test
�

dangerous
structure
�

When� each update� at commit� at commit� each update�

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

SSI in PostgreSQL 9.1
!  Basically follows Cahill’s approach
!  Some additional optimisations:

!  Identify ‘safe snapshot’ situations for read-only transactions
!  If a read-only tx is found to run on a safe snapshot, will never abort

and does not need to take and SIREAD locks (less overhead)
! For long running transactions (e.g. backup):

!  Allow DBA to delay them until they are guaranteed to run on a safe
snapshot

!  Fully integrated into DBMS
! Needed a bit more complex code than Michael’s prototype ;)

!  ISOLATION LEVEL SERIALISABLE is now SSI
!  ISOLATION LEVEL REPEADABLE READ is the former SI
!  Default isolation level is still read committed…
IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 48

[Ports, VLDB2012]

Performance Penalty for Correctness?
!  Obviously, tracking dependencies and aborting transactions

(some of them false aborts) doesn’t come for free
!  What are the costs for being correct?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 49

psql 9.1 with TPC-C, ! [VLDB2012]

Research Question

 Is SSI still as fast on a multicore server?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 50

The Price of Serialisability
!  MySQL 5.1.3 with InnoDB on 24 core Xeon Server

!  Implemented SSI, ESSI and PSSI in same engine (Linux)
! quantified overhead at ca. 10%

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 51

Scalability with Number of Cores?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 52

!  The previous figure was for just a single core server
! with a (75%-RO-25%-RU) workload

!  What happens if we enable all 24 cores of the server?

The Big Picture

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 53

On 24 cores with a (75%-RO-25%-RU) workload

Transaction Runtimes

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 54

Read-Only Transactions Update Transactions

Transaction runtimes increase massively with MPL on 24 cores.

Same Picture with Latest Postgres 9.2

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 55

On 32 cores with a (75%-RO-25%-RU) workload

Why?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 56

Profiled Execution Times

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 57

Reason: Mutex Contention

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 58

!  More and more time is spend just waiting

!  In order to avoid race conditions…
! …but which ’race’ ?

!  And it can get even worse:

“Readers Never Block”?

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 59

Read-Only Workload on 24 cores

Solution: Using Latch-free Data
Structures for internal state of CC

!  Latches are short-term locks (e.g. mutexes) that protect
critical code sections from race conditions
! E.g. only one thread is allowed to change the global transaction list

!  Latch-Free Data Structures
! Allow concurrent r/w access to in-memory data structures using

atomic CPU operations such as Compare-And-Swap
! Pro: Non-blocking, no latches needed anymore
! Con: More complex; deletions require tombstones and some form of

later garbage collection

!  Proof of Concept: SSI with MySQL
! Latch-free implementations of

!  read-write conflict checks, and
!  Consistent reads (read_view)

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-60

Performance Improvements

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-61

Summary

!  Transaction Management is the backbone of DBMSs
!  Pessimistic Concurrency Control

!  lock-based concurrency control schemes detect conflicts between
concurrent transactions by incompatible locks on data items

! Strict-2PL: Avoids cascading aborts, but deadlocks possible
! Deadlocks can either be prevented or detected.

!  Optimistic Concurrency Control
! aims to minimize CC overheads in an ``optimistic’’ environment

where reads are common and writes are rare.
! Multiversion Timestamp CC is a variant which ensures that read-only

transactions are never restarted; they can always read a suitable
older version. Additional overhead of version maintenance.

! Snapshot Isolation as popular CC nowadays
!  But does not guarantee serializable executions!

IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm) 9-62 62

References
!  H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, P. O'Neil in

SIGMOD1995: “A Critique of ANSI SQL Isolation Levels”

!  A. Bernstein, P. Lewis and S. Lu in ICDE2000:
“Semantic Conditions for Correctness at Different Isolation Levels”

!  A. Fekete, D. Liarokapis, E. O'Neil, P. O’Neil, D. Shasha in TODS2005:
“Making Snapshot Isolation Serializable”

!  M. Alomari, M. Cahill, A. Fekete, U. Röhm in ICDE2008:
“The Cost of Serializability on Platforms That Use Snapshot Isolation”

!  M. Cahill, U. Röhm and A. Fekete in SIGMOD2008:
“Serialisable Isolation for Snapshot Databases”

!  D. Ports and K. Grittner in VLDB2012:
“Serialisable Snapshot Isolation in PostgreSQL”

!  H. Jung, H. Han, A. Fekete, U. Röhm and H. Y. Yeom, DASFAA 2013:
“Performance of Serializable Snapshot Isolation on Multicore Servers”

!  H. Han, S. Park, H. Jung, A. Fekete, U. Röhm and H. Y. Yeom, ICDE2014:
“Scalable Serializable Snapshot Isolation for Multicore Systems”

63 63 IN2267 "Transaction Systems" - WS 2013/14 (Guest Lecture U. Röhm)

