Grundlagen: Datenbanken

1. Zentralübung - WS 16/17

Harald Lang, Linnea Passing

gdb@in.tum.de

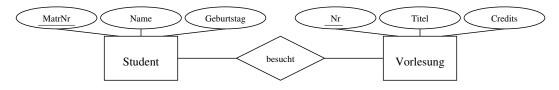
Prüfungstermin 01.03.2017, 10:30 Uhr

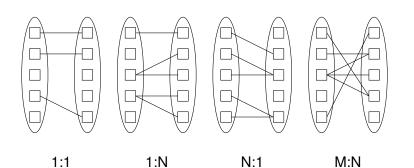
Anmeldung bis 15.01.2017, 23:59 Uhr

Die Mitschrift stellen wir im Anschluss online.

Diese Folien finden Sie online.

Datenbankentwurf





Das Relationale Modell

Definition

- ► Eine relationale Datenbank enthält eine Menge von Relationen
- ▶ Eine Relation R besteht aus zwei Bestandteilen:
 - ► Einer **Instanz** *R*: eine Tabelle mit Zeilen und Spalten; der *aktuelle Inhalt* der Relation (auch Ausprägung genannt)
 - Einem Schema R: spezifiziert den Namen der Relation und die Namen und Datentypen der Spalten; legt die Struktur der Relation fest

Das Relationale Modell

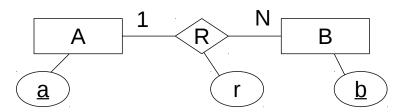
Beispielausprägung:

Studenten			
MatrNr	Name	Semester	
24002	Xenokrates	18	
25403	Jonas	10	
27550	Schopenhauer	6	
	•••		

Schema:

- ▶ 3 Attribute: MatrNr, Name, Semester
- ▶ das Schema assoziiert jedes Attribut mit einer Domäne (Wertebereich)
 - $D_{MatrNr} = dom(MatrNr) = Integer = [-2^{31}, 2^{31})$
 - **...**
 - ► $Studenten \subseteq dom(MatrNr) \times dom(Name) \times dom(Semester)$
 - $ightharpoonup Studenten \subseteq integer imes string imes integer$
- Schreibweisen:
 - ightharpoonup Studenten: {[MatrNr: int, Name: string, Semester: int]}
 - ightharpoonup Studenten: {[MatrNr, Name, Semester]}
 - $ightharpoonup Studenten = \{MatrNr, Name, Semester\}$
 - ightharpoonup Studenten(MatrNr, Name, Semester)

ER-Modell in Schema überführen und verfeinern



Relationale Algebra

Algebraische Operatoren:

Projektion	$\Pi_{A_1,,A_n}$
Selektion	σ_p
Kreuzprodukt	×
Verbund (Join)	$\bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}$
Mengenoperationen	∪, ∩, \
Division	÷
Gruppierung/Aggregation	$\Gamma_{A_1,\ldots,A_n;a_1:f_1,\ldots,a_m:f_m}$
Umbenennung	ρ_N , oder $\rho_{a_1 \leftarrow b_1, \dots, a_n \leftarrow b_n}$

Anmerkung: Natural-Join vs. allgemeiner Theta-Join

	Natural	Theta
Inner	M	$\bowtie_{ heta}$
Outer	$\bowtie, \bowtie, \bowtie$	$\bowtie_{\theta}, \bowtie_{\theta}, \bowtie_{\theta}$
Semi	\bowtie , \rtimes	$\ltimes_{ heta}, \rtimes_{ heta}$
Anti	▷, ◁	$\triangleright_{ heta}, \triangleleft_{ heta}$

Natural

- Implizite Gleichheitsbedingung auf gleichnamigen Attributen
- Die gleichnamigen Attribute tauchen im Ergebnis nur einmal auf (inner und outer).

▶ Theta

- **Explizite** (beliebige) Joinbedingung: θ .
- ► Im Falle von Inner- und Outer-Join werden alle Attribute der beiden Eingaberelationen in das Ergebnis projiziert.

Übung: Relationale Algebra (1)

Finde Studenten (nur Namen ausgeben), die im gleichen Semester sind wie Feuerbach.

Übung: Relationale Algebra (2)

Finde Studenten (nur MatrNr ausgeben), die alle Vorlesungen gehört haben.

Relationale Entwurfstheorie

Relationale Entwurftheorie

Funktionale Abhängigkeiten (kurz FDs, für functional dependencies):

- ▶ Seien α und β Attributmengen eines Schemas \mathcal{R} .
- ▶ Wenn auf \mathcal{R} die FD $\alpha \to \beta$ definiert ist, dann sind nur solche Ausprägungen R zulässig, für die folgendes gilt:
 - Für alle Paare von Tupeln $r, t \in R$ mit $r \cdot \alpha = t \cdot \alpha$ muss auch gelten $r \cdot \beta = t \cdot \beta$.

Übung: Relationenausprägung vervollständigen

Gegen seien die folgende Relationenausprägung und die funktionalen Abhängigkeiten. Bestimmen Sie zunächst x und danach y, sodass die FDs gelten.

$$\begin{array}{ccc} B & \to & A \\ AC & \to & D \end{array}$$

Α	В	O	D
7	3	5	8
x	4	2	8
7	3	6	9
1	4	2	y

Funktionale Abhängigkeiten

Seien $\alpha, \beta, \gamma, \delta \subseteq \mathcal{R}$

Axiome von Armstrong:

Reflexivität:

Falls
$$\beta \subseteq \alpha$$
 , dann gilt immer $\alpha \to \beta$

Verstärkung:

Falls
$$\alpha \to \beta$$
 gilt, dann gilt auch $\alpha \gamma \to \beta \gamma$

► Transitivität:

Falls
$$\alpha \to \beta$$
 und $\beta \to \gamma$ gelten, dann gilt auch $\alpha \to \gamma$

Mithilfe dieser Axiome können alle *geltenden* FDs hergeleitet werden.

Sei F eine FD-Menge. Dann ist F⁺ die Menge aller geltenden FDs (Hülle von F)

Funktionale Abhängigkeiten

Nützliche und vereinfachende Regeln:

- ► Vereinigungsregel: Falls $\alpha \to \beta$ und $\alpha \to \gamma$ gelten, dann gilt auch $\alpha \to \beta \gamma$
- ▶ Dekompositionsregel: Falls $\alpha \to \beta \gamma$ gilt, dann gilt auch $\alpha \to \beta$ und $\alpha \to \gamma$
- ▶ Pseudotransitivitätsregel: Falls $\alpha \to \beta$ und $\gamma\beta \to \delta$ gelten, dann gilt auch $\gamma\alpha \to \delta$

Schlüssel

- ▶ Schlüssel identifizieren jedes Tupel einer Relation R eindeutig.
- ▶ Eine Attributmenge $\alpha \subseteq \mathcal{R}$ ist ein **Superschlüssel**, gdw. $\alpha \to \mathcal{R}$
- ▶ Ist α zudem noch *minimal*, ist es auch ein **Kandidatenschlüssel** (meist mit κ bezeichnet)
 - ▶ Es existiert also kein $\alpha' \subset \alpha$ für das gilt: $\alpha' \to \mathcal{R}$

- ► I.A. existieren mehrere Super- und Kandidatenschlüssel.
- Man muss sich bei der Realisierung für einen Kandidatenschlüssel entscheiden, dieser wird dann Primärschlüssel genannt.
- ▶ Der triviale Schlüssel $\alpha = \mathcal{R}$ existiert immer.

Übung: Schlüsseleigenschaft von Attributmengen ermitteln

- ▶ Ob ein gegebenes α ein Schlüssel ist, kann mithilfe der Armstrong Axiome ermittelt werden (i.A. zu aufwendig!)
- ▶ Besser: Die **Attributhülle** $AH(\alpha)$ bestimmen.

 $\blacktriangleright \text{ Beispiel: } \mathcal{R} = \{\ A\ ,\ B\ ,\ C\ ,\ D\ \}, \text{mit } F_{\mathcal{R}} = \{AB \to CD, B \to C, D \to B\}$

```
AH(\{D\}):
```

$$AH(\{A,D\})$$
:

$$AH(\{A,B,D\})$$
:

Normalformen: $1NF \supset 2NF \supset 3NF \supset BCNF \supset 4NF$

- ▶ 1. NF: Attribute haben nur atomare Werte, sind also nicht mengenwertig.
- ▶ 2. NF: Jedes Nichtschlüsselattribut (NSA) ist voll funktional abhängig von jedem Kandidatenschlüssel.
 - ▶ β hängt **voll funktional** von α ab $(\alpha \xrightarrow{\bullet} \beta)$, gdw. $\alpha \to \beta$ und es existiert kein $\alpha' \subset \alpha$, so dass $\alpha' \to \beta$ gilt.
- ▶ 3. NF: Frei von transitiven Abhängigkeiten (in denen NSAe über andere NSAe vom Schlüssel abhängen).
 - für alle geltenden nicht-trivialen FDs $\alpha \to \beta$ gilt entweder
 - α ist ein Superschlüssel, oder
 - ightharpoonup jedes Attribut in β ist in einem Kandidatenschlüssel enthalten
- ▶ **BCNF**: Die linken Seiten (α) aller geltenden nicht-trivalen FDs sind Superschlüssel.
- ▶ **4. NF**: Die linken Seiten (α) aller geltenden nicht-trivalen MVDs sind Superschlüssel.

Mehrwertige Abhängigkeiten

multivalued dependencies (MVDs)

"Halb-formal":

- Seien α und β disjunkte Teilmengen von \mathcal{R}
- und $\gamma = (\mathcal{R} \backslash \alpha) \backslash \beta$
- ▶ dann ist β mehrwertig abhängig von α ($\alpha \twoheadrightarrow \beta$), wenn in jeder gültigen Ausprägung von \mathcal{R} gilt:
- ▶ Bei zwei Tupeln mit gleichem α -Wert kann man die β -Werte vertauschen, und die resultierenden Tupel müssen auch in der Relation enthalten sein.

Wichtige Eigenschaften:

- Jede FD ist auch eine MVD (gilt i.A. nicht umgekehrt)
- wenn $\alpha \twoheadrightarrow \beta$, dann gilt auch $\alpha \twoheadrightarrow \gamma$ (Komplementregel)
- $ightharpoonup \alpha woheadrightarrow \beta$ ist trivial, wenn $\beta \subseteq \alpha$ ODER $\alpha \cup \beta = \mathcal{R}$ (also $\gamma = \emptyset$)

Beispiel: Mehrwertige Abhängigkeiten

 ${\bf Beispiel:}\ R = \{{\bf ProfessorIn},\ {\bf Vorlesung},\ {\bf AssistentIn}\}$

ProfessorIn	Vorlesung	AssistentIn
K	GDB	Linnea
K	Tx Systems	Linnea

Übung: Höchste NF bestimmen

```
\mathcal{R}: \{ [\ A, B, C, D, E\ ] \} A \rightarrow BCDE AB \rightarrow C
```

- 1. NF
- 2. NF
- 3. NF
- O BCNF
- 4. NF
- keine der angegebenen

Übung: Höchste NF bestimmen (2)

```
\mathcal{R}: \{ [\ A, B, C, D, E\ ] \} A \rightarrow BCDE B \rightarrow C
```

- 1. NF
- 2. NF
- 3. NF
- 4. NF
- keine der angegebenen

Schema in 3. NF überführen

Synthesealgorithmus

- Eingabe:
 - Kanonische Überdeckung \mathcal{F}_c
 - Linksreduktion
 - Rechtsreduktion
 - ▶ FDs der Form $\alpha \to \emptyset$ entfernen (sofern vorhanden)
 - FDs mit gleicher linke Seite zusammenfassen

Algorithmus:

- 1. Für jede FD $\alpha \to \beta$ in \mathcal{F}_c forme ein Unterschema $\mathcal{R}_\alpha = \alpha \cup \beta$, ordne \mathcal{R}_α die FDs $\mathcal{F}_\alpha := \{\alpha' \to \beta' \in \mathcal{F}_c \mid \alpha' \cup \beta' \subseteq \mathcal{R}_\alpha\}$ zu
- 2. Füge ein Schema \mathcal{R}_{κ} mit einem Kandidatenschlüssel hinzu
- 3. Eliminiere redundante Schemata, d.h. falls $\mathcal{R}_i \subseteq \mathcal{R}_j$, verwerfe \mathcal{R}_i

Ausgabe:

- ▶ Eine Zerlegung des unsprünglichen Schemas, wo alle Schemata in 3.NF sind.
- Die Zerlegung ist abhängigkeitsbewahrend und verlustfrei.

Übung: Synthesealgorithmus

```
\mathcal{R}: \{[A, B, C, D, E, F]\}
B \rightarrow ACDEF
```

 $\begin{array}{ccc} EF & \to & BC \\ A & \to & D \end{array}$

Schema in BCNF überführen

BCNF-Dekompositionsalgorithmus (nicht abhängigkeitsbewahrend)

- ▶ Starte mit $Z = \{\mathcal{R}\}$
- ▶ Solange es noch ein $\mathcal{R}_i \in Z$ gibt, das nicht in BCNF ist:
 - ▶ Finde eine FD $(\alpha \rightarrow \beta) \in F^+$ mit
 - $\alpha \cup \beta \subseteq \mathcal{R}_i$ (FD muss in \mathcal{R}_i gelten)
 - $\alpha \cap \beta = \emptyset$ (linke und rechte Seite sind disjunkt)
 - $\alpha \to \mathcal{R}_i \notin F^+$ (linke Seite ist kein Superschlüssel)
 - ▶ Zerlege \mathcal{R}_i in $\mathcal{R}_{i,1} := \alpha \cup \beta$ und $\mathcal{R}_{i,2} := \mathcal{R}_i \beta$
 - ▶ Entferne \mathcal{R}_i aus Z und füge $\mathcal{R}_{i,1}$ und $\mathcal{R}_{i,2}$ ein, also $Z := (Z \{\mathcal{R}_i\}) \cup \{\mathcal{R}_{i,1}\} \cup \{\mathcal{R}_{i,2}\}$

Schema in 4.NF überführen

4NF-Dekompositionsalgorithmus (nicht abhängigkeitsbewahrend)

- ▶ Starte mit $Z = \{\mathcal{R}\}$
- ▶ Solange es noch ein $\mathcal{R}_i \in Z$ gibt, das nicht in 4NF ist:
 - ▶ Finde eine MVD $\alpha \rightarrow \beta \in \mathcal{F}^+$ mit
 - $\alpha \cup \beta \subset \mathcal{R}_i$ (FD muss in \mathcal{R}_i gelten)
 - $\alpha \cap \beta = \emptyset$ (linke und rechte Seite sind disjunkt)
 - $\alpha \to \mathcal{R}_i \notin \mathcal{F}^+$ (linke Seite ist kein Superschlüssel)
 - ▶ Zerlege \mathcal{R}_i in $\mathcal{R}_{i,1} := \alpha \cup \beta$ und $\mathcal{R}_{i,2} := \mathcal{R}_i \beta$
 - ▶ Entferne \mathcal{R}_i aus Z und füge $\mathcal{R}_{i,1}$ und $\mathcal{R}_{i,2}$ ein, also $Z := (Z \{\mathcal{R}_i\}) \cup \{\mathcal{R}_{i,1}\} \cup \{\mathcal{R}_{i,2}\}$

Übung: BCNF-Dekompositionsalgorithmus

 $\mathcal{R} = \{ A, B, C, D, E, F \}, F_{\mathcal{R}} = \{ B \to AD, DEF \to B, C \to AE \}$