Query Optimization

 Exercise Session 3Bernhard Radke

November 21

Homework: Task 1

```
select *
    from lineitem l, orders o, customers c
    where l.l_orderkey=o.o_orderkey
    and o.o_custkey=c.c_custkey
    and c.c_name='Customer#000014993'.
```


Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$,

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ is...

- if x is the key:

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ is...

- if x is the key: $\frac{1}{|R 1|}$

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ is...

- if x is the key: $\frac{1}{|R 1|}$
- if x is not the key:

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ is...

- if x is the key: $\frac{1}{|R 1|}$
- if x is not the key: $\frac{1}{|R 1 . x|}$

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ is...

- if both x and y are the keys:

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ is...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ is...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key:

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ is...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key: $\frac{1}{|R 1|}$

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ is...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key: $\frac{1}{|R 1|}$
- if both x and y are not the keys:

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ is...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key: $\frac{1}{|R 1|}$
- if both x and y are not the keys: $\frac{1}{\max (|R 1 . x|,|R 2 . y|)}$

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is $\frac{\max (R 1 . x)-c}{\max (R 1 . x)-\min (R 1 . x)}$

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is $\frac{\max (R 1 . x)-c}{\max (R 1 . x)-\min (R 1 . x)}$

The selectivity of $\sigma_{c 1<R 1 . x<c 2}$ is

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is $\frac{\max (R 1 . x)-c}{\max (R 1 . x)-\min (R 1 . x)}$

The selectivity of $\sigma_{c 1<R 1 . x<c 2}$ is $\frac{c 2-c 1}{\max -\min }$

Homework: Task 3

- $|R|=1,000$ pages, $|S|=100,000$ pages
- 1 page - 50 tuples, 1 block - 100 pages
- avg. access $=10 \mathrm{~ms}$, transfer speed $=10,000$ pages $/ \mathrm{sec}$
- Time for blocked nested loops join $=$?

Homework: Task 3

- $|R|=1,000$ pages, $|S|=100,000$ pages
- 1 page - 50 tuples, 1 block - 100 pages
- avg. access $=10 \mathrm{~ms}$, transfer speed $=10,000$ pages $/ \mathrm{sec}$
- Time for blocked nested loops join $=$?
- choose left argument: R vs. $S, \frac{1,000}{100}$ vs. $\frac{100,000}{100} \Rightarrow R$

Homework: Task 3

- Time to read one block:

$$
T_{b}=\text { avg.seek }+\left(100 \frac{1}{\text { transfer speed }}\right)=0.02 s
$$

Homework: Task 3

- Time to read one block:
$T_{b}=$ avg.seek $+\left(100 \frac{1}{\text { transfer speed }}\right)=0.02 \mathrm{~s}$
- Read 1 block from R, join it with S :

$$
T_{b}+\text { time to read } \mathrm{S} \approx 10 s
$$

Homework: Task 3

- Time to read one block:

$$
T_{b}=\text { avg.seek }+\left(100 \frac{1}{\text { transfer speed }}\right)=0.02 s
$$

- Read 1 block from R, join it with S :

$$
T_{b}+\text { time to read } \mathrm{S} \approx 10 s
$$

- Repeat it for every block in R :

$$
T_{B N L J}=\frac{\text { \#pages in } \mathrm{R}}{\text { block size }}(10 s) \approx 100 s
$$

Greedy operator ordering

- take the query graph
- find relations R_{1}, R_{2} such that $\left|R_{1} \bowtie R_{2}\right|$ is minimal and merge them into one node
- repeat until the query graph has more than one node

Generates bushy trees!

Example

Example - step 1

Example - after step 1

Example - step 2

Example- after step 2

Example - step 3

Example - after step 3

Example - step 4

Example - after step 4

Example - step 5

Example - after step 5

$\left(R_{1} \bowtie R_{2}\right) \bowtie\left(R_{3} \bowtie R_{4}\right)(1200)$
0.2268
$\left(R_{7} \bowtie R_{8}\right) \bowtie\left(\left(R_{5} \bowtie R_{6}\right) \bowtie R_{9}\right)(1080)$

Example - result

IKKBZ (informally)

Query graph Q is acyclic. Pick a root node, turn it into a tree. Run the following procedure for every root node, select the cheapest plan

Input: rooted tree Q

1. if the tree is a single chain, stop
2. find the subtree (rooted at r) all of whose children are chains
3. normalize, if $c_{1} \rightarrow c_{2}$, but $\operatorname{rank}\left(c_{1}\right)>\operatorname{rank}\left(c_{2}\right)$ in the subtree rooted at r
4. merge chains in the subtree rooted at r, rank is ascending
5. repeat 1

IKKBZ (informally)

For every relation R_{i} we keep

- cardinality n_{i}
- selectivity s_{i} — the selectivity of the incoming edge from the parent of R_{i}
- cost $C\left(R_{i}\right)=n_{i} s_{i}$ (or 0 , if R_{i} is the root)
- rank $r_{i}=\frac{n_{i} s_{i}-1}{n_{i} s_{i}}$

Moreover,

- $C\left(S_{1} S_{2}\right)=C\left(S_{1}\right)+T\left(S_{1}\right) C\left(S_{2}\right)$
- $T(S)=\prod_{R_{i} \in S}\left(s_{i} n_{i}\right)$
- rank of a sequence $r(S)=\frac{T(S)-1}{C(S)}$

Understanding IKKBZ

- what is the rank?
- when is $\left(R_{1} \bowtie R_{2}\right) \bowtie R_{3}$ cheaper than $\left(R_{1} \bowtie R_{3}\right) \bowtie R_{2}$?

Understanding IKKBZ

- what is the rank?
- when is $\left(R_{1} \bowtie R_{2}\right) \bowtie R_{3}$ cheaper than $\left(R_{1} \bowtie R_{3}\right) \bowtie R_{2}$?
- if $r\left(R_{2}\right)<r\left(R_{3}\right)$!

IKKBZ - example

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{3}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$

IKKBZ - example

Subtree R_{3} : merging,
$\operatorname{rank}\left(R_{5}\right)<\operatorname{rank}\left(R_{4}\right)$

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{3}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$

IKKBZ - example

Subtree R_{1} : $\operatorname{rank}\left(R_{3}\right)>\operatorname{rank}\left(R_{5}\right)$, normalizing

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{3}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$
3,5	60	$\frac{1}{3}$	30	20	$\frac{19}{30}$

IKKBZ - example

Subtree R_{1} : merging

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{15}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$
3,5	60	$\frac{1}{15}$	30	20	$\frac{19}{30}$

IKKBZ - example

IKKBZ - another example

$$
\begin{aligned}
-\left|R_{1}\right| & =30 \\
-\left|R_{2}\right| & =100 \\
-\left|R_{3}\right| & =30 \\
-\left|R_{4}\right| & =20 \\
-\left|R_{5}\right| & =10 \\
-\left|R_{6}\right| & =20 \\
-\left|R_{7}\right| & =70 \\
-\left|R_{8}\right| & =100 \\
-\left|R_{9}\right| & =100
\end{aligned}
$$

IKKBZ

IKKBZ

- $C\left(R_{8,9}\right)=100$

$R_{8,9}$
- $T\left(R_{8,9}\right)=80$
- $r\left(R_{8,9}\right)=\frac{79}{100}=0.79$
- $C\left(R_{6,7}\right)=60$
- $T\left(R_{6,7}\right)=50$
- $r\left(R_{6,7}\right)=\frac{49}{60} \approx 0.816$

IKKBZ

- $C\left(R_{8,9}\right)=100$

- $T\left(R_{8,9}\right)=80$
- $r\left(R_{8,9}\right)=\frac{79}{100}=0.79$
- $C\left(R_{6,7}\right)=60$
- $T\left(R_{6,7}\right)=50$
- $r\left(R_{6,7}\right)=\frac{49}{60} \approx 0.816$

IKKBZ

IKKBZ

IKKBZ

IKKBZ

- $n_{5,8,9}=800$
- $C_{5,8,9}=\frac{1515}{2}$
- $T_{5,8,9}=600$
- $r\left(R_{5,8,9}\right)=\frac{1198}{1515} \approx 0.79$
- $r\left(R_{6,7}\right) \approx 0.816$

IKKBZ

- $r\left(R_{2}\right)=\frac{9}{10}$
- $r\left(R_{3}\right)=0.8$
- $r\left(R_{4}\right)=0$
- $r\left(R_{5,8,9}\right)=\frac{1198}{1515} \approx 0.79$
- $r\left(R_{6,7}\right) \approx 0.816$

IKKBZ
$R_{1}-R_{3}-R_{4}-R_{5,8,9}-R_{6,7}-R_{2}$

IKKBZ
$R_{1}-R_{3}-R_{4}-R_{5}-R_{8}-R_{9}-R_{6}-R_{7}-R_{2}$

IKKBZ-based heuristics

What if Q has cycles?

- Observation 1: the answer of the query, corresponding to any subgraph of the query graph, is a superset of the answer to the original query
- Observation 2: a very selective join is more likely to be influential in choosing the order than a non-selective join

IKKBZ-based heuristics

What if Q has cycles?

- Observation 1: the answer of the query, corresponding to any subgraph of the query graph, is a superset of the answer to the original query
- Observation 2: a very selective join is more likely to be influential in choosing the order than a non-selective join

Choose the minimum spanning tree (minimize the product of the edge weights), compute the total order, compute the original query.

Homework: Task 1 (10 points)

Selectivity estimation continues...

- Our estimations (prev. homework) are far from perfect
- Construct specific examples (database schema, concrete instances of relations and selections/joins), where our estimations are very "bad"
- "Bad" - means that for some queries (give examples of SQL queries) the logical plan will be suboptimal (w.r.t $C_{\text {out }}$), if we use these estimations
- In other words, bad estimations mislead the optimizer and it outputs a clearly suboptimal plan
- Two examples (one for selections, one for joins)

Homework: Task 2 (5 points)

- Give an example query instance where the optimal join tree (using $C_{\text {out }}$) is bushy and includes a cross product.
- Note: the query graph should be connected!

Homework: Task 3 (15 points)

- Using the program from the first exercise as a basis, implement a program that
- parses SQL queries
- translates them into tinydb execution plans
- and executes the query.
- Note: a canonical translation of the joins is fine, but push all predicates of the form attr $=$ const down to the base relations

Info

- Slides and exercises: http://db.in.tum.de/teaching/ws1617/queryopt/
- Send any questions, comments, solutions to exercises etc. to radke@in.tum.de
- Exercises due: 9 AM, November 21

