
Query Optimization
Exercise Session 3

Bernhard Radke

November 21

Homework: Task 1

select *

from lineitem l, orders o, customers c

where l.l_orderkey=o.o_orderkey

and o.o_custkey=c.c_custkey

and c.c_name=’Customer#000014993’.

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y ,

(that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c is...

I if x is the key: 1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c is...

I if x is the key:

1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c is...

I if x is the key: 1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c is...

I if x is the key: 1
|R1|

I if x is not the key:

1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c is...

I if x is the key: 1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is

|R1||R2|
The selectivity of onR1.x=R2.y is...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y is...

I if both x and y are the keys:

1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y is...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y is...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key:

1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y is...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y is...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys:

1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y is...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is

max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is c2−c1
max−min

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is c2−c1
max−min

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is

c2−c1
max−min

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is c2−c1
max−min

Homework: Task 3

I |R| = 1, 000 pages, |S | = 100, 000 pages

I 1 page - 50 tuples, 1 block - 100 pages

I avg. access = 10 ms, transfer speed = 10,000 pages/sec

I Time for blocked nested loops join = ?

I choose left argument: R vs. S , 1,000
100 vs. 100,000

100 ⇒ R

Homework: Task 3

I |R| = 1, 000 pages, |S | = 100, 000 pages

I 1 page - 50 tuples, 1 block - 100 pages

I avg. access = 10 ms, transfer speed = 10,000 pages/sec

I Time for blocked nested loops join = ?

I choose left argument: R vs. S , 1,000
100 vs. 100,000

100 ⇒ R

Homework: Task 3

I Time to read one block:
Tb = avg .seek + (100 1

transfer speed) = 0.02s

I Read 1 block from R, join it with S :

Tb + time to read S ≈ 10s

I Repeat it for every block in R:

TBNLJ =
#pages in R

block size
(10s) ≈ 100s

Homework: Task 3

I Time to read one block:
Tb = avg .seek + (100 1

transfer speed) = 0.02s

I Read 1 block from R, join it with S :

Tb + time to read S ≈ 10s

I Repeat it for every block in R:

TBNLJ =
#pages in R

block size
(10s) ≈ 100s

Homework: Task 3

I Time to read one block:
Tb = avg .seek + (100 1

transfer speed) = 0.02s

I Read 1 block from R, join it with S :

Tb + time to read S ≈ 10s

I Repeat it for every block in R:

TBNLJ =
#pages in R

block size
(10s) ≈ 100s

Greedy operator ordering

I take the query graph

I find relations R1, R2 such that |R1 on R2| is minimal and
merge them into one node

I repeat until the query graph has more than one node

Generates bushy trees!

Example

- step 1

R1(10)

R9(10)

R2(10) R3(10)

R6(10)

R5(10)

R4(10)

R8(10) R7(10)

0.8 0.5

0.3

0.7 0.6

0.2

0.2

0.6

0.6

0.3

0.3

0.9

Example - step 1

R1(10)

R9(10)

R2(10) R3(10)

R6(10)

R5(10)

R4(10)

R8(10) R7(10)

0.8 0.5

0.3

0.7 0.6

0.20.2

0.6

0.6

0.3

0.3

0.9

Example - after step 1

- step 2

R1(10)

R9(10)

R2(10) R3(10)

R5 on R6(20)

R4(10)

R8(10) R7(10)

0.8 0.5

0.3

0.3

0.7 0.540.6

0.6

0.3

0.3

0.3

Example - step 2

R1(10)

R9(10)

R2(10) R3(10)

R5 on R6(20)

R4(10)

R8(10) R7(10)

0.8 0.5

0.30.3

0.7 0.540.6

0.6

0.3

0.30.3

Example- after step 2

- step 3

R1(10)

R9(10)

R2(10) R3 on R4(30)

R5 on R6(20)

R7 on R8(30)

0.8 0.5

0.7 0.540.6

0.6

0.3

0.3

Example - step 3

R1(10)

R9(10)

R2(10) R3 on R4(30)

R5 on R6(20)

R7 on R8(30)

0.8 0.5

0.7 0.540.6

0.6

0.30.3

Example - after step 3

R1(10) R2(10) R3 on R4(30)

(R5 on R6) on R9(60)

R7 on R8(30)

0.8 0.5

0.7 0.540.6

0.6

Example - step 4

R1(10) R2(10) R3 on R4(30)

(R5 on R6) on R9(60)

R7 on R8(30)

0.8 0.5

0.7 0.540.6

0.6

Example - after step 4

R1 on R2(80) R3 on R4(30)

(R5 on R6) on R9(60)

R7 on R8(30)

0.5

0.42 0.54

0.6

Example - step 5

R1 on R2(80) R3 on R4(30)

(R5 on R6) on R9(60)

R7 on R8(30)

0.5

0.42 0.54

0.6

Example - after step 5

(R1 on R2) on (R3 on R4)(1200)

(R7 on R8) on ((R5 on R6) on R9)(1080)

0.2268

Example - result

./

./

./

R1 R2

./

R3 R4

./

./

R7 R8

./

./

R5 R6

R9

IKKBZ (informally)

Query graph Q is acyclic. Pick a root node, turn it into a tree.
Run the following procedure for every root node, select the
cheapest plan

Input: rooted tree Q

1. if the tree is a single chain, stop

2. find the subtree (rooted at r) all of whose children are chains

3. normalize, if c1 → c2, but rank(c1) > rank(c2) in the subtree
rooted at r

4. merge chains in the subtree rooted at r , rank is ascending

5. repeat 1

IKKBZ (informally)

For every relation Ri we keep

I cardinality ni
I selectivity si — the selectivity of the incoming edge from the

parent of Ri

I cost C (Ri) = ni si (or 0, if Ri is the root)

I rank ri = ni si−1
ni si

Moreover,

I C (S1S2) = C (S1) + T (S1)C (S2)

I T (S) =
∏

Ri∈S(sini)

I rank of a sequence r(S) = T (S)−1
C(S)

Understanding IKKBZ

I what is the rank?

I when is (R1 on R2) on R3 cheaper than (R1 on R3) on R2?

I if r(R2) < r(R3)!

Understanding IKKBZ

I what is the rank?

I when is (R1 on R2) on R3 cheaper than (R1 on R3) on R2?

I if r(R2) < r(R3)!

IKKBZ - example

R1

R2 R3

R4 R5

1
5

1
3

1
10 1

Relation n s C T rank

2 20 1
5 4 4 3

4

3 30 1
3 10 10 9

10

4 50 1
10 5 5 4

5

5 2 1 2 2 1
2

IKKBZ - example

Subtree R3: merging,
rank(R5) < rank(R4)

R1

R2 R3

R5

R4

Relation n s C T rank

2 20 1
5 4 4 3

4

3 30 1
3 10 10 9

10

4 50 1
10 5 5 4

5

5 2 1 2 2 1
2

IKKBZ - example

Subtree R1:
rank(R3) > rank(R5),
normalizing

R1

R2 R3,5

R4

Relation n s C T rank

2 20 1
5 4 4 3

4

3 30 1
3 10 10 9

10

4 50 1
10 5 5 4

5

5 2 1 2 2 1
2

3,5 60 1
3 30 20 19

30

IKKBZ - example

Subtree R1: merging

R1

R3,5

R2

R4

Relation n s C T rank

2 20 1
5 4 4 3

4

3 30 1
15 10 10 9

10

4 50 1
10 5 5 4

5

5 2 1 2 2 1
2

3,5 60 1
15 30 20 19

30

IKKBZ - example

Denormalizing

R1

R3

R5

R2

R4

Relation n s C T rank

2 20 1
5 4 4 3

4

3 30 1
15 10 10 9

10

4 50 1
10 5 5 4

5

5 2 1 2 2 1
2

3,5 60 1
3 30 20 3

30

IKKBZ - another example

R3

R1

R2

R4 R5 R6 R7

R8

R9

1
6

1
10

1
20

3
4

1
2

1
14

1
5

1
25

I |R1| = 30

I |R2| = 100

I |R3| = 30

I |R4| = 20

I |R5| = 10

I |R6| = 20

I |R7| = 70

I |R8| = 100

I |R9| = 100

IKKBZ

R3

R1

R2

R4 R5 R6 R7

R8

R9

I r(R2) = 9
10 = 0.9

I r(R3) = 4
5 = 0.8

I r(R4) = 0

I r(R5) = 13
15 ≈ 0.86

I r(R6) = 9
10 = 0.9

I r(R7) = 4
5 = 0.8

I r(R8) = 19
20 = 0.95

I r(R9) = 3
4 = 0.75

IKKBZ

R3

R1

R2

R4 R5 R6,7

R8,9

I C (R8,9) = 100

I T (R8,9) = 80

I r(R8,9) = 79
100 = 0.79

I C (R6,7) = 60

I T (R6,7) = 50

I r(R6,7) = 49
60 ≈ 0.816

IKKBZ

R3

R1

R2

R4 R5 R6,7

R8,9

I C (R8,9) = 100

I T (R8,9) = 80

I r(R8,9) = 79
100 = 0.79

I C (R6,7) = 60

I T (R6,7) = 50

I r(R6,7) = 49
60 ≈ 0.816

IKKBZ

R3

R1

R2

R4 R5 R8,9 R6,7

I r(R8,9) < r(R6,7)

IKKBZ

R3

R1

R2

R4 R5 R8,9 R6,7

I r(R4) = 0

I r(R5) = 13
15 ≈ 0.86

I r(R8,9) = 79
100 = 0.79

I r(R6,7) = 49
60 ≈ 0.81

IKKBZ

R3

R1

R2

R4 R5 R8,9 R6,7

I r(R5) = 13
15 ≈ 0.86

I r(R8,9) = 0.79

IKKBZ

R3

R1

R2

R4 R5,8,9 R6,7

I n5,8,9 = 800

I C5,8,9 = 1515
2

I T5,8,9 = 600

I r(R5,8,9) = 1198
1515 ≈ 0.79

I r(R6,7) ≈ 0.816

IKKBZ

R3

R1

R2

R4 R5,8,9 R6,7

I r(R2) = 9
10

I r(R3) = 0.8

I r(R4) = 0

I r(R5,8,9) = 1198
1515 ≈ 0.79

I r(R6,7) ≈ 0.816

IKKBZ

R3R1 R4 R5,8,9 R6,7 R2

IKKBZ

R3R1 R4 R5 R8 R9 R6 R7 R2

IKKBZ-based heuristics

What if Q has cycles?

I Observation 1: the answer of the query, corresponding to any
subgraph of the query graph, is a superset of the answer to
the original query

I Observation 2: a very selective join is more likely to be
influential in choosing the order than a non-selective join

Choose the minimum spanning tree (minimize the product of the
edge weights), compute the total order, compute the original query.

IKKBZ-based heuristics

What if Q has cycles?

I Observation 1: the answer of the query, corresponding to any
subgraph of the query graph, is a superset of the answer to
the original query

I Observation 2: a very selective join is more likely to be
influential in choosing the order than a non-selective join

Choose the minimum spanning tree (minimize the product of the
edge weights), compute the total order, compute the original query.

Homework: Task 1 (10 points)

Selectivity estimation continues...

I Our estimations (prev. homework) are far from perfect

I Construct specific examples (database schema, concrete
instances of relations and selections/joins), where our
estimations are very ”bad”

I ”Bad” – means that for some queries (give examples of SQL
queries) the logical plan will be suboptimal (w.r.t Cout), if we
use these estimations

I In other words, bad estimations mislead the optimizer and it
outputs a clearly suboptimal plan

I Two examples (one for selections, one for joins)

Homework: Task 2 (5 points)

I Give an example query instance where the optimal join tree
(using Cout) is bushy and includes a cross product.

I Note: the query graph should be connected!

Homework: Task 3 (15 points)

I Using the program from the first exercise as a basis,
implement a program that

I parses SQL queries
I translates them into tinydb execution plans
I and executes the query.

I Note: a canonical translation of the joins is fine, but push all
predicates of the form attr = const down to the base relations

Info

I Slides and exercises:
http://db.in.tum.de/teaching/ws1617/queryopt/

I Send any questions, comments, solutions to exercises etc. to
radke@in.tum.de

I Exercises due: 9 AM, November 21

http://db.in.tum.de/teaching/ws1617/queryopt/
mailto:radke@in.tum.de?subject=[qo16]

