Query Optimization
Repetition

Bernhard Radke

January 09, 2017

19

Motivation

» declarative query has to be translated into an imperative,
executable plan

» usually multiple semantically equivalent plans (search space)

» possibly huge differences in execution costs of different
alternatives

Goal: find the cheapest of those plans

)

19

Query Graph

» undirected graph

> nodes: relations

> edges: predicates/joins

» different shapes (e.g. chain, star, tree, clique)

» shape influences size of the search space

3/19

Join Tree

» inner nodes: operators (e.g. join, cross product)

> leaves: relations
» different shapes
> linear (left-deep, right-deep, zigzag)
> bushy
» desired shape influences size of the search space

» with cross products: number of tree shapes * number of leaf
permutations
» without cross products: depends on the shape of the query

graph

19

Selectivity, Cardinality

- _loulR)
P IR|
fiJ _ ’Ri MPi,j RJ‘

‘R,'X Rj’

19

Costs

Cout(R) = 0
Cout(Ri X Rj) = |R/ X RJ| + Cout(Ri) + Cout(Rj)

» more advanced cost functions for different physical join
implementations
> properties
» symmetry: C(Ax B) = C(B x A)
» ASI: rank function r such that
r(AUVB) < r(AVUB) < C(AUVB) < C(AVUB)

6

19

Greedy Heuristics

» choose each relation as start node once

» greedily pick adjacent nodes to join such that a specific
function (e.g. MinSel) is minimized/maximized

» pick the cheapest tree

» produces linear trees

19

Greedy Operator Ordering (GOO)

» greedily pick edges such that the intermediate result is
minimized

» merge nodes connected by the picked edge

» calculate cardinality of merged node

» calculate selectivities of collapsed edges (product of individual
selectivities)

» can produce bushy trees

Maximum Value Precedence (MVP)

heuristic: prefer to perform joins that reduce the input size of
expensive operations the most

algorithm builds an effective spanning tree in the weighted
directed join graph (edges and nodes have weights)

> physical edge: wy,, =
> virtual edge: w,, =1
IN,‘f,.JI

» node: W(p,‘J, 5) = W
take edges with weight < 1 (reduce work for later operators)

add remaining edges (increase input sizes as late as possible)

19

IKKBZ

» generates optimal left deep trees for acyclic queries in
polynomial time (requires cost function with ASI property)
» for each relation R in the query graph
> build the precedence graph rooted in R
» find subtree whose children are chains
> build compound relations to eliminate contradictory sequences
(normalize)
» merge chains (ascending in rank)
» repeat until the whole join tree is a chain
» denormalize previously normalized compound relations

» pick the cheapest of all generated sequences

10/19

Dynamic Programming

v

optimality principle

v

construct larger trees from optimal smaller ones

v

try all combinations that might be optimal

v

different possibilities to enumerate sets of relations

» DPg,.: enumerate sets ascending in size
» DP,,,: enumerate in integer order
» DP.,: enumerate connected component complement pairs
> adapts to the shape of the query graph
> lower bound for all DP algorithms
» DPyyp,: handles hypergraphs (join predicates between more
than two relations, reordering constraints for non inner joins,
graph simplification)

11/19

Memoization

> recursive top-down approach
» memoize already generated trees to avoid duplicate work
» might be faster, as more knowledge allows for more pruning

> usually slower than DP

12 /19

Transformative Approaches

» apply equivalences to initial join tree
» makes it easy to add new equivalences/rules (in theory)
» use memoization (keep all trees generated so far)

> naive implementation generates a massive amount of
duplicates

» duplicates can be avoided by disabling certain rules after a
transformation has been applied (introduction of new rules
becomes harder)

13 /19

Permutations

» construct permutations of relations (left deep trees)
» choose each relation as start relation once

» successively add a relation to the existing chain (recursively
enlarge the prefix)

» only explore the resulting chain further if exchanging the last
two relations does not result in a cheaper chain

» recursion base: all relations are contained in the chain = keep
chain if cheaper than cheapest chain seen so far

> any time algorithm (can be stopped as soon as the first
complete permutation is generated)

» finds the optimal plan eventually

14 /19

Random Join Trees (uniformly distributed)

general approach:
> set of alternatives S
» count number of alternatives n = |§]|

» bijection rank : S — [0, n|

v

draw a random number r € [0, n|

v

rank—1(r) gives a random element from S (unranking)
implementation

» random permutation (left deep tree, leaf labeling)

» random tree shape (Dyck words)

» random trees without cross products for tree queries (pretty
complex)

15/19

Quick Pick

» generate pseudo random trees
» randomly pick an edge from the query graph
> no longer uniformly distributed = no guarantees

» use union-find datastructure to identify subsets containing the
nodes connected by an edge

16 /19

Meta Heuristics

> universal optimization strategies

> lterative Improvement

>

>

>

start with random join tree
apply random transformation until minimum is reached
might be stuck in local minimum

» Simulated Annealing (inspired by metallurgy)

>

>

>

start with random join tree

apply random transformation

accept transformed tree either if it is cheaper or - with a
temperature dependent probability - even if it is more expensive

» decrease temperature over time
> allows to escape local minima

17 /19

Meta Heuristics

» Tabu Search
» start with random join tree
> investigate cheapest neighbor even if it is more expensive
» keep (recently) investigated solutions in tabu set to avoid
running into circles

18 /19

Outlook

> join ordering

» genetic algorithms (population of join trees, simulate crossover
and mutation, survival of the fittest)
> hybrid approaches

» order preserving joins (e.g. for XQuery/XPath)
> accessing the data

> physical properties

19/19

