Improvement of Bloomfilters:
 A Rank and Selected Based Quotient Filter

Matthias Bungeroth

Chair for Database Systems - Tum
16th January 2018

Structure

Tasks

■ Filters in general

- Bloom-filter

■ Rank and Selected Based Quotient Filter
■ Couting Rank and Selected Based Quotient Filter

Filters in general

Filters

- Can be configured with a false-positive-rate δ and n the element count to insert
- Implements method insert
- Implements method query that returns true or false

Filters in general

Counting-filters

■ Implements method query that returns count

Bloom-Filter

A Bloom-filter is a couple (B, H). With B a bit-vector and H a set of hash-functions.

Empty Bloom-Filter with $\mathrm{H}=\left\{h_{1}(x), h_{2}(x)\right\}$

slot	0	1	2	3	4	5	6	7
B	0	0	0	0	0	0	0	0

Insert a and b with

$$
\begin{aligned}
& h_{1}(a)=1, h_{2}(a)=5 \\
& h_{1}(b)=3, h_{2}(b)=5
\end{aligned}
$$

slot	0	1	2	3	4	5	6	7
B	0	1	0	1	0	1	0	0

Counting-Bloom-Filter

A Bloom-filter is a couple (B, H).
With B a vector of counters and H a set of hash-functions.

slot	0	1	2	3	4	5	6	7
B	127	0	0	190	90	0	227	0

> query $(b)=0$
> query $(c)=90$

$$
\begin{aligned}
& h_{1}(b)=3, h_{2}(b)=5 \\
& h_{1}(c)=3, h_{2}(c)=4
\end{aligned}
$$

Rank and Selected Based Quotient Filter

$■$ Spilts hash in h_{0} (homeslot) and h_{1} (remainder)

- Remainders are stored in homeslot if possible.

Rank and Selected Based Quotient Filter

Filters
$\square \operatorname{occupied}[x]=1 \Longleftrightarrow \exists y \in S: h_{0}(y)=x$

- $\forall_{x, y \in S}: h_{0}(x)<h_{0}(y) \Longrightarrow h 1(x)$ is stored in an earlier slot than $h_{1}(y)$
\square If $h_{1}(x)$ is stored in slot s, then $h_{0}(x) \leq s$ and there are no unused slots between slot $h_{0}(x)$ and slot s , inclusive.
\square runends $[b]=1 \Longleftrightarrow$ slot b contains the last remainder in a run.
S is a set of elements that have been inserted.

slot	0	1	2	3	4	5	6	7
occupied	0	0	0	0	0	0	0	0
runend	0	0	0	0	0	0	0	0
remainders	0	0	0	0	0	0	0	0

Rank and Selected Based Quotient Filter

slot	0	1	2	3	4	5	6	7
occupied	0	0	0	0	0	0	0	0
runend	0	0	0	0	0	0	0	0
remainders	0	0	0	0	0	0	0	0

$h_{1}(a)=0$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| runend | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| remainders | $h_{1}(a)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$
\begin{aligned}
& h_{0}(a)=0 \\
& h_{0}(b)=0
\end{aligned}
$$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| runend | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | 0 | 0 | 0 | 0 | 0 | 0 |

$h_{0}(b)=0$
$h_{0}(c)=0$
$h_{0}(d)=0$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | 0 | 0 | 0 | 0 |

$h_{0}(c)=0$
$h_{0}(d)=0$
$h_{0}(e)=1$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | $h_{1}(e)$ | 0 | 0 | 0 |

$$
\begin{aligned}
& h_{0}(e)=1 \\
& h_{0}(f)=4
\end{aligned}
$$

Rank and Selected Based Quotient Filter

Rank and Select

$\operatorname{RANK}(B, i)=\sum_{j=0}^{i} B[j]$ (Ammount of set bits in B upto postion i)
$\operatorname{SELECT}(B, i)=($ Index of the i th set bit in B$)$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | $h_{1}(e)$ | 0 | 0 | 0 |

$h_{0}(f)=4$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | $h_{1}(e)$ | 0 | 0 | 0 |

$h_{0}(f)=4$
RANK (occupied, 4) $=2$
$\operatorname{SELECT}($ runend, 2$)=4$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | $h_{1}(e)$ | $h_{1}(f)$ | 0 | 0 |

$h_{0}(f)=4$
RANK (occupied, 4) $=2$
$\operatorname{SELECT}($ runend, 2$)=4$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | $h_{1}(e)$ | $h_{1}(f)$ | 0 | 0 |

$h_{0}(g)=0$
$\operatorname{RANK}($ occupied, 0$)=1$
$\operatorname{SELECT}($ runend, 1$)=3$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | 0 | $h_{1}(e)$ | $h_{1}(f)$ | 0 |

$h_{0}(g)=0$
$\operatorname{RANK}($ occupied, 0$)=1$
$\operatorname{SELECT}($ runend, 1$)=3$

Rank and Selected Based Quotient Filter

 Insert-example| slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| occupied | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| runend | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| remainders | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | $h_{1}(g)$ | $h_{1}(e)$ | $h_{1}(f)$ | 0 |

$h_{0}(g)=0$
$\operatorname{RANK}($ occupied, 0$)=1$
$\operatorname{SELECT}($ runend, 1$)=3$

Rank and Selected Based Quotient Filter

SELECT(runend, RANK (occupied, slot))

Returns corresponding runnend bit to a slot if occupied[slot]=1.

Rank and Selected Based Quotient Filter

$$
\text { runend }=\text { SELECT }(\text { runend }, \text { RANK }(\text { occupied }, \text { slot }))
$$

slot	0	1	2	3	4	5	6	7
occupied	1	1	0	0	1	0	0	0
runend	0	0	0	0	1	1	1	0
remainders	$h_{1}(a)$	$h_{1}(b)$	$h_{1}(c)$	$h_{1}(d)$	$h_{1}(g)$	$h_{1}(e)$	$h_{1}(f)$	0

```
s = rankSelect(h0(x))
do{
    if remainders[s] = h1(x) then
        return true;
    s = s-1;
}while(s>h0(x) and !runend[s]);
return false;
```


Rank and Selected Based Quotient Filter

■ Linar runtime of Query and Insert cause by the Rank and Select operation
■ Can be improved to 0(1) with offsets.

Rank and Selected Based Quotient Filter

Offsets

■ $O_{i}=\operatorname{rankSelect}(i)-i$
■ Only defined if and only if occupied[i] = 1
■ Only saved for every 64th slot

- To ensure every offset is defined runnend and occupied bits are inserted
■ Save flag to check if element was inserted into a 64th slot

Rank and Selected Based Quotient Filter

- Currently all data is stored in different arrays
- Data can be reorganized into blocks

7	1	64	64	$r \cdot 64$
offset	used	occupieds	runends	remainders

Rank and Selected Based Quotient Filter

 CountingThe Rank and Selected Based Quotient Filter counts unary.

slot	0	1	2	3	4	5	6	7
occupied	1	0	0	0	0	0	0	0
runend	0	0	0	0	0	0	1	0
remainders	$h_{1}(a)$	0						

Counting Rank and Selected Based Quotient FilterПII

 Counter encoding■ Encoded counters for elements can be added

slot	0	1	2	3	4	5	6	7
occupied	1	0	0	0	0	0	0	0
runend	0	0	1	0	0	0	0	0
remainders	$h_{1}(a)$	5	$h_{1}(a)$	0	0	0	0	0

Counting Rank and Selected Based Quotient FilterПII

 Counter encoding| Count | Encoding | Rules | |
| :---: | :---: | :--- | :---: |
| 1 | x | none | |
| 2 | x, x | none | |
| For $\boldsymbol{x}=\mathbf{0}$ | | | |
| 3 | x, x, x | none | |
| >3 | $x, c_{l-1}, \ldots, c_{0}, x, x$ | $\forall_{c_{i} \neq x}$ | |
| | | $\forall_{i<l-1} c_{i} \neq x$ | |
| For $\boldsymbol{x} \neq \mathbf{0}$ | | | |
| | $x, c_{l-1}, \ldots, c_{0}, x$ | $x>0$ | |
| | | $c_{l-1}<x$ | |
| | | $\forall_{i<l-1} c_{i} \neq x$ | |
| | | $\forall_{c_{i}} \neq x$ | |

Counting Rank and Selected Based Quotient FilterПII

 Counter encodingFor $x \neq 0$ and count $C \geq 3$:
$C-3$ as c_{l-1}, \ldots, c_{0} in base $2^{r}-2$ where symbols are
$1,2, \ldots, x-1, x+1, \ldots, 2^{r}-1$ and attach a zero to front if $c_{l}>x$.

For $x=0$ and count $C \geq 4$:
$C-4$ as c_{l-1}, \ldots, c_{0} in base $2^{r}-1$ where symbols are $1,2, \ldots, 2^{r}-1$.

Evaluation

Rank and Selected Based Quotient Filter variants

■ Runtime

- Space consumption

Evaluation

Runtime

■ Random inserts
■ Queries on inserted elements

- Random queries

Evaluation

Rank and Selected Based Quotient Filter variants

Configuration	Operations	RSQF no	RSQF nb	RSQF
$\delta=0.001$	Random insert	20 s	$<5 \mathrm{~ms}$	$<2 \mathrm{~ms}$
$n=10000$	Query on inserted elements	20 s	$<5 \mathrm{~ms}$	$<2 \mathrm{~ms}$
	Random query(100\% load)	0.1 s	$<1 \mathrm{~ms}$	$<0.5 \mathrm{~ms}$
$\delta=0.0001$	Random insert	$/$	1.4 s	3.7 s
$n=10000000$	Query on inserted elements	$/$	1.8 s	5.3 s
	Random query(100\% load)	$/$	0.7 s	0.6 s
$\delta=0.001$	Random insert	$/$	43 s	15 s
$n=100000000$	Query on inserted elements	$/$	52 s	17 s
	Random query(100\% load)	$/$	8.2 s	7.3 s

Evaluation

Rank and Selected Based Quotient Filter compared to Bloomfilter

Configuration	Operations(in million per second)	BF	RSQF
$\begin{aligned} & \delta=0.01 \\ & n=10000000 \end{aligned}$			(r=4)
	Random insert	2.9	6.0
	Query on inserted elements	3.2	7.6
	Random query(100\% load)	12.7	12.0
$\begin{aligned} & \delta=0.00001 \\ & n=10000000 \end{aligned}$			(r=8)
	Random insert	1.6	8.8
	Query on inserted elements	1.8	6.6
	Random query(100\% load)	12.26	25.7
$\begin{aligned} & \delta=0.000001 \\ & n=100000000 \end{aligned}$			(r=16)
	Random insert	1.1	4.7
	Query on inserted elements	1.3	5.0
	Random query(100\% load)	10.0	10.4

Evaluation

Rank and Selected Based Quotient Filter variants

Evaluation

Space-analysis

Space-Consumption for $n=100000000$

Evaluation

Space-analysis

Space-Consumption for $\delta=0.00001$

Space-Consumption for $\delta=0.00000001$

Evaluation

Operations(in million per second)	CBF	CQF(r=8)
Random insert	7.9	13.5
Random lookup	7.7	9.6

Table showing average runtime of 1000000000 operations each for a CQF/ CBF configured with $\delta=0.0001, n=2000$

Thanks for your attention.

Any Questions?

Implementation....

