
Improvement of Bloomfilters:
A Rank and Selected Based Quotient Filter

Matthias Bungeroth

Chair for Database Systems - Tum

16th January 2018

Structure

Tasks
Filters in general
Bloom-filter
Rank and Selected Based Quotient Filter
Couting Rank and Selected Based Quotient Filter

Filters in general
Filters

Can be configured with a false-positive-rate δ and n the element
count to insert
Implements method insert
Implements method query that returns true or false

Filters in general
Counting-filters

Implements method query that returns count

Bloom-Filter

A Bloom-filter is a couple (B , H).
With B a bit-vector and H a set of hash-functions.

Empty Bloom-Filter with H={ h1(x) , h2(x) }

slot 0 1 2 3 4 5 6 7
B 0 0 0 0 0 0 0 0

Insert a and b with
h1(a) = 1,h2(a) = 5
h1(b) = 3,h2(b) = 5

slot 0 1 2 3 4 5 6 7
B 0 1 0 1 0 1 0 0

Counting-Bloom-Filter

A Bloom-filter is a couple (B , H).
With B a vector of counters and H a set of hash-functions.

slot 0 1 2 3 4 5 6 7
B 127 0 0 190 90 0 227 0

query(b) = 0
query(c) = 90

h1(b) = 3,h2(b) = 5
h1(c) = 3,h2(c) = 4

Rank and Selected Based Quotient Filter
Filters

Spilts hash in h0 (homeslot) and h1 (remainder)
Remainders are stored in homeslot if possible.

Rank and Selected Based Quotient Filter
Filters

occupied[x] = 1 ⇐⇒ ∃y∈S : h0(y) = x
∀x ,y∈S : h0(x) < h0(y) =⇒ h1(x) is stored in an earlier slot than
h1(y)
If h1(x) is stored in slot s, then h0(x) ≤ s and there are no unused
slots between slot h0(x) and slot s, inclusive.
runends[b]=1 ⇐⇒ slot b contains the last remainder in a run.

S is a set of elements that have been inserted.

slot 0 1 2 3 4 5 6 7
occupied 0 0 0 0 0 0 0 0
runend 0 0 0 0 0 0 0 0
remainders 0 0 0 0 0 0 0 0

Rank and Selected Based Quotient Filter
Filters

slot 0 1 2 3 4 5 6 7
occupied 0 0 0 0 0 0 0 0
runend 0 0 0 0 0 0 0 0
remainders 0 0 0 0 0 0 0 0

h1(a) = 0

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 0 0 0 0 0 0 0
runend 1 0 0 0 0 0 0 0
remainders h1(a) 0 0 0 0 0 0 0

h0(a) = 0
h0(b) = 0

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 0 0 0 0 0 0 0
runend 0 1 0 0 0 0 0 0
remainders h1(a) h1(b) 0 0 0 0 0 0

h0(b) = 0
h0(c) = 0
h0(d) = 0

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 0 0 0 0 0 0 0
runend 0 0 0 1 0 0 0 0
remainders h1(a) h1(b) h1(c) h1(d) 0 0 0 0

h0(c) = 0
h0(d) = 0
h0(e) = 1

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 0 0 0 0
runend 0 0 0 1 1 0 0 0
remainders h1(a) h1(b) h1(c) h1(d) h1(e) 0 0 0

h0(e) = 1
h0(f) = 4

Rank and Selected Based Quotient Filter
Rank and Select

RANK (B, i) =
∑i

j=0 B[j] (Ammount of set bits in B upto postion i)

SELECT (B, i) = (Index of the i th set bit in B)

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 0 0 0 0
runend 0 0 0 1 1 0 0 0
remainders h1(a) h1(b) h1(c) h1(d) h1(e) 0 0 0

h0(f) = 4

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 0 0 0 0
runend 0 0 0 1 1 0 0 0
remainders h1(a) h1(b) h1(c) h1(d) h1(e) 0 0 0

h0(f) = 4
RANK (occupied ,4) = 2
SELECT (runend ,2) = 4

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 1 0 0 0
runend 0 0 0 1 1 1 0 0
remainders h1(a) h1(b) h1(c) h1(d) h1(e) h1(f) 0 0

h0(f) = 4
RANK (occupied ,4) = 2
SELECT (runend ,2) = 4

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 1 0 0 0
runend 0 0 0 1 1 1 0 0
remainders h1(a) h1(b) h1(c) h1(d) h1(e) h1(f) 0 0

h0(g) = 0
RANK (occupied ,0) = 1
SELECT (runend ,1) = 3

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 1 0 0 0
runend 0 0 0 1 0 1 1 0
remainders h1(a) h1(b) h1(c) h1(d) 0 h1(e) h1(f) 0

h0(g) = 0
RANK (occupied ,0) = 1
SELECT (runend ,1) = 3

Rank and Selected Based Quotient Filter
Insert-example

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 1 0 0 0
runend 0 0 0 0 1 1 1 0
remainders h1(a) h1(b) h1(c) h1(d) h1(g) h1(e) h1(f) 0

h0(g) = 0
RANK (occupied ,0) = 1
SELECT (runend ,1) = 3

Rank and Selected Based Quotient Filter
Runend of slot

SELECT (runend ,RANK (occupied , slot))

Returns corresponding runnend bit to a slot if occupied[slot]=1.

Rank and Selected Based Quotient Filter
Query

runend = SELECT (runend ,RANK (occupied , slot))

slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 1 0 0 0
runend 0 0 0 0 1 1 1 0
remainders h1(a) h1(b) h1(c) h1(d) h1(g) h1(e) h1(f) 0

1 s = rankSelect(h0(x))

2 do{

3 if remainders[s] = h1(x) then

4 return true;

5 s = s-1;

6 }while(s>h0(x) and !runend[s]);

7 return false;

Rank and Selected Based Quotient Filter
Improvement of runtime

Linar runtime of Query and Insert cause by the Rank and Select
operation
Can be improved to 0(1) with offsets.

Rank and Selected Based Quotient Filter
Offsets

Oi = rankSelect(i)− i
Only defined if and only if occupied[i] = 1
Only saved for every 64th slot
To ensure every offset is defined runnend and occupied bits are
inserted
Save flag to check if element was inserted into a 64th slot

Rank and Selected Based Quotient Filter
Improvment of cache efficeny

Currently all data is stored in different arrays
Data can be reorganized into blocks

7 1 64 64 r · 64
offset used occupieds runends remainders

Rank and Selected Based Quotient Filter
Counting

The Rank and Selected Based Quotient Filter counts unary.

slot 0 1 2 3 4 5 6 7
occupied 1 0 0 0 0 0 0 0
runend 0 0 0 0 0 0 1 0
remainders h1(a) h1(a) h1(a) h1(a) h1(a) h1(a) h1(a) 0

Counting Rank and Selected Based Quotient Filter
Counter encoding

Encoded counters for elements can be added

slot 0 1 2 3 4 5 6 7
occupied 1 0 0 0 0 0 0 0
runend 0 0 1 0 0 0 0 0
remainders h1(a) 5 h1(a) 0 0 0 0 0

Counting Rank and Selected Based Quotient Filter
Counter encoding

Count Encoding Rules
1 x none
2 x , x none

For x = 0
3 x , x , x none
> 3 x , cl−1, . . . , c0, x , x ∀ci 6= x

∀i<l−1 ci 6= x
For x 6= 0

> 2 x , cl−1, . . . , c0, x x > 0
cl−1 < x
∀i<l−1 ci 6= x
∀ci 6= x

Counting Rank and Selected Based Quotient Filter
Counter encoding

For x 6= 0 and count C ≥ 3:
C − 3 as cl−1, . . . , c0 in base 2r − 2 where symbols are
1,2, . . . , x − 1, x + 1, . . . ,2r − 1 and attach a zero to front if cl > x .

For x = 0 and count C ≥ 4:
C − 4 as cl−1, . . . , c0 in base 2r − 1 where symbols are 1,2, . . . ,2r − 1.

Evaluation
Rank and Selected Based Quotient Filter variants

Runtime
Space consumption

Evaluation
Runtime

Random inserts
Queries on inserted elements
Random queries

Evaluation
Rank and Selected Based Quotient Filter variants

Configuration Operations RSQF no RSQF nb RSQF
δ = 0.001 Random insert 20s <5ms <2ms
n = 10000 Query on inserted elements 20s <5ms <2ms

Random query(100% load) 0.1s <1ms <0.5ms
δ = 0.0001 Random insert / 1.4s 3.7s
n = 10000000 Query on inserted elements / 1.8s 5.3s

Random query(100% load) / 0.7s 0.6s
δ = 0.001 Random insert / 43s 15s
n = 100000000 Query on inserted elements / 52s 17s

Random query(100% load) / 8.2s 7.3s

Evaluation
Rank and Selected Based Quotient Filter compared to Bloomfilter

Configuration Operations(in million per second) BF RSQF
(r=4)

δ = 0.01 Random insert 2.9 6.0
n = 10000000 Query on inserted elements 3.2 7.6

Random query(100% load) 12.7 12.0

(r=8)
δ = 0.00001 Random insert 1.6 8.8
n = 10000000 Query on inserted elements 1.8 6.6

Random query(100% load) 12.26 25.7

(r=16)
δ = 0.000001 Random insert 1.1 4.7
n = 100000000 Query on inserted elements 1.3 5.0

Random query(100% load) 10.0 10.4

Evaluation
Rank and Selected Based Quotient Filter variants

0 10 20 30 40 50 60 70 80 90
0
1
2
3
4
5
6
7
8
9

10

Loadfactor in %

M
ill

io
ns

pe
rs

ec
on

d

random inserts RSQF r=16
lookups RSQF r=16

lookups BF
random inserts BF

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

Loadfactor in %

M
ill

io
ns

pe
rs

ec
on

d

random lookups RSQF
random lookups BF

Evaluation
Space-analysis

2 4 6 8 10
·10−3

200

400

600

800

δ

M
B

Space-Consumption for n = 100000000

RSQF r = 16
RSQF r = 8
RSQF r = 4

BF

Evaluation
Space-analysis

0 2 4 6 8 10
·105

0

2

4

6

8

n

M
B

Space-Consumption for δ = 0.00001

RSQF r = 16
RSQF r = 8
RSQF r = 4

BF

0 2 4 6 8 10
·108

0

20

40

60

80

n

M
B

Space-Consumption for δ = 0.00000001

RSQF r = 32
BF

Evaluation
Counting-filter

Operations(in million per second) CBF CQF(r=8)
Random insert 7.9 13.5
Random lookup 7.7 9.6

Table showing average runtime of 1000 000 000 operations each for a
CQF/ CBF configured with δ = 0.0001 ,n = 2000

Thanks for your attention.

Any Questions?

Implementation....

