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Adaptive Radix Tree

Adaptive Rradix Tree

Whats so special?
I Improved radix tree (or prefix tree)
I Dynamically adjusts node size
I Can compress paths
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Example radix tree
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Different node types

I Node4
I Node16
I Node48
I Node256

Example Node4:

Keys (1B each) Pointer (8B each)
0 13 42 255 Ptr to 0 Ptr to 13 Ptr to 42 Ptr to 255

Lookup using findChild()
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Lookup algorithm

1 l ookup ( node , key , depth ) :
2 i f node == NULL
3 r e t u r n NULL
4 i f i s L e a f ( node )
5 i f l e a fMat che s ( node , key , depth )
6 r e t u r n node
7 r e t u r n NULL
8 // . . .
9 next = f i n d C h i l d ( node , key [ depth ] )

10 r e t u r n lookup ( next , key , depth+1)
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What is Out Of Order Execution?

(a+b)+(c+d)

No dependency between (a+b) and (c+d)
→ Can be calculated in parallel

Especially helpful for expensive operations, like memory accesses
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Linked List Experiment
One list

Linked List data type:

1 s t r u c t Node {
2 Node ∗ next ;
3 s t d : : u int8_t data [ 5 6 ] ;
4 } ;

Iteration:

1 f o r (Node ∗ c u r r = l i s t ;
2 c u r r != n u l l p t r ;
3 c u r r = cur r−>next ) {
4 // Empty body
5 }

In Assembler:

1 0x3590 : mov (%rax ) ,% rax
2 0x3593 : t e s t %rax ,% rax ; depends on the f i r s t i n s t r .
3 0x3596 : j n e 0 x3590

13 / 28



Linked List Experiment
One list

Linked List data type:

1 s t r u c t Node {
2 Node ∗ next ;
3 s t d : : u int8_t data [ 5 6 ] ;
4 } ;

Iteration:

1 f o r (Node ∗ c u r r = l i s t ;
2 c u r r != n u l l p t r ;
3 c u r r = cur r−>next ) {
4 // Empty body
5 }

In Assembler:

1 0x3590 : mov (%rax ) ,% rax
2 0x3593 : t e s t %rax ,% rax ; depends on the f i r s t i n s t r .
3 0x3596 : j n e 0 x3590

13 / 28



Linked List Experiment
One list

Linked List data type:

1 s t r u c t Node {
2 Node ∗ next ;
3 s t d : : u int8_t data [ 5 6 ] ;
4 } ;

Iteration:

1 f o r (Node ∗ c u r r = l i s t ;
2 c u r r != n u l l p t r ;
3 c u r r = cur r−>next ) {
4 // Empty body
5 }

In Assembler:

1 0x3590 : mov (%rax ) ,% rax
2 0x3593 : t e s t %rax ,% rax ; depends on the f i r s t i n s t r .
3 0x3596 : j n e 0 x3590

13 / 28



Linked List Experiment
Two lists

1 f o r (Node ∗ cu r r 1 = l i s t 1 , ∗ cu r r 2 = l i s t 2 ;
2 cu r r 1 != n u l l p t r && cu r r 2 != n u l l p t r ;
3 cu r r 1 = cur r1−>next , c u r r 2 = cur r2−>next ) {
4 // Empty body
5 }

In Assembler:

1 0x3600 : mov (%rax ) ,% rax
2 0x3603 : mov (%rdx ) ,% rdx ; No dependency !
3 0x3606 : t e s t %rax ,% rax
4 0x3609 : j e 0 x3610
5 0x360b : t e s t %rdx ,% rdx
6 0 x360e : j n e 0 x3600
7 0x3610 : . . .
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Linked List Experiment
Results
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2

4

6

8

·104

Amount of parallel lists

V
is
ite

d
lis
t
en
tr
ie
s
pe
r
µ
s

15 / 28



Linked List Experiment
Results

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

·104

Amount of parallel lists

V
is
ite

d
lis
t
en
tr
ie
s
pe
r
µ
s

15 / 28



Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

16 / 28



Basic idea

Perform multiple lookups at the same time

This technique is called Group Prefetching

Keep track of every lookup
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Tracking each state

How can we track the state of each lookup?

1 s t r u c t GPState {
2 s t d : : u int8_t key [ 8 ] ;
3 Node ∗node ;
4

5 uns i gned depth = 0 ;
6 // . . .
7 boo l f i n i s h e d = f a l s e ;
8

9 GPState ( ) : node ( n u l l p t r ) {}
10 GPState (Node ∗node ) : node ( node ) {}
11 } ;
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The actual lookup algorithm

1 vo i d lookupGP ( s td : : v e c to r <GPState> &s t a t e s ) {
2 wh i l e ( /∗ not a l l f i n i s h e d ∗/ ) {
3 // Loop ove r e v e r y s t a t e
4 f o r ( auto &s t a t e : s t a t e s ) {
5 i f ( s t a t e . f i n i s h e d )
6 con t i nu e ;
7

8 // Perform the normal lookup a l g o r i t hm s t ep
9 i f ( s t a t e . node == NULL | | i s L e a f ( s t a t e . node ) ) {

10 s t a t e . f i n i s h e d = t r u e ;
11 con t i nu e ;
12 }
13 s t a t e . node = ∗ f i n d C h i l d ( s t a t e . node ,
14 s t a t e . key [ s t a t e . depth ] ) ;
15 s t a t e . depth++;
16 }
17 }
18 }
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Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)
I Joining lineitem with orders
I lineitem has foreign key to orders
I Creating an index on orders
I Iterating the tuples in lineitem and performing a lookup in

the ART for orders (with multiple keys using GP)
I Amount of parallel lookups is called Group Size
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Benchmarking Results
Ordered
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Benchmarking Results
Unordered
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Benchmarking Results
Unordered
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My reaction
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Lessons learned?

Group Prefetching . . .

I . . . increases Performance, but not as much as seen in the
Linked List experiment

I . . . gives about 200% speed increase
I . . . is always useful, when lookup keys are known in advance

(e.g. during a Join)
I . . . can be adjusted using the Group Size variable. Concrete

value changes speed increase
→ perfect value depends on use case and hardware

Out Of Order Execution is quite cool
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