

Bonusproject 2, Execution Engines

Timo Kersten
Technische Universität München
Faculty for Computer Science
Chair for Database Systems

DBMS Execution Engines

Execution Engines

Traditional Interpreters (in DBMS)

Volcano style interpreters

G. Graefe, Volcano - An Extensible and Parallel Query Evaluation System

Example: Expression evaluator: a + b * c

```
class Operator;
class BinaryOperator;
class Plus;
class Mul;
class Operator {
 public:
  virtual int compute();
};
class BinaryOperator : public Operator {
 protected:
   Operator *left, *right;
};
class Plus : public BinaryOperator {
   int compute() override {
      auto 1 = left->compute();
      auto r = right->compute();
      return 1 + r;
};
```


Runtime Behavior

Many virtual function calls

- → Register value saving, memory traffic
- → Hard to predict branches, miss penalty 15c
- **⇒** Extra instructions

Vectorized Interpreter

Idea: Penalties are on a per call basis. Let's pass multiple elements per call -> Amortize call cost over batch

```
#include <vector>
class Operator;
class BinaryOperator;
class Plus;
class Operator {
 public:
  virtual vector<int> compute();
};
class Plus : public BinaryOperator {
   vector<int> compute() override {
      auto l = left->compute();
                                              One call per batch
      auto r = right->compute();
      vector<int> result;
      for (int i = 0; i < 1.size(); ++i) Tight loop over elements
       result.push back(l[i] + r[i]);
      return result;
};
```

Vectorized Interpreter Runtime Behavior

Amortizes call overhead.

Complications:

- Memory traffic
- Control flow, e.g. selection, join, grouping
 - → Selection vectors
 - → Sparsely populated vectors after operation, less effective amortisation
- Type combinations, e.g. combined hash table keys

Optimal Vector Size

Runtimes of selected TPC-H queries Sf=1

Trade-off between amortisation and cache capacity

Vectorized Interpreter: Pros

Remember: Some restrictions on type combinations

But some advantages:

- Call overhead is amortised
- Each primitive can use the full power of C to work on multiple elements
 - That means we can easily use hardware features, e.g. SIMD, hashing instructions, prefetching.
- Everything precompiled: Query execution can start right away.

Code Compilation


```
int compiledFun(int a, int b, int c) {
  return a + b * c;
}
```

Pro:

- No virtual function calls
- Intermediate values can be kept in registers
- Compiler can choose minimal number of instructions
- Data flow becomes control flow

Cons:

- Compile time
- How to use SIMD etc.?

If one wants to build a new query engine today, which paradigm should one use?

Vectorwise vs. HyPer?

Oction. Vectorwise

Efficiently Compiling Efficient Query Plans for Modern Hardware, Neumann, VLDB 2011

Other systems with query compilation: Peloton, Microsoft Hekaton, Spark, ...

MonetDB/X100: Hyper-Pipelining Query Execution, Boncz et al., CIDR 2005

Other systems with vectorized architecuture: Quickstep, Snowflake, ...

Not directly comparable:

- Different storage/compression schemes
- Different query processing algorithms and data structure
- Different parallelisation frameworks
- Different query optimisers

• ...

Tectorwise vs. Typer

Back to back comparison: Implementation of both paradigms

- Same storage/compression schemes (mmap-ed uncompressed columns)
- Same query processing algorithms and data structure (down to identical hash tables)
- Same parallelisation frameworks (morsel-driven parallelization)
- Same query optimisers (identical query plans)

•

TPC-H (SF=1, 1 thread, no SIMD)

Main cost from:

q1: Expression Evaluation

q6: Selection

q3: Join with small hts

q9: Join with big hts

q18: Grouping

Microarchitectural Analysis: TPC-H q1

	cycles	IPC	instr.	L1 miss	LLC miss	branch miss	mem. stall cycles
Typer	34	2.0	68	0.6	0.57	0.01	1.8
Tectorwise	59	2.8	162	2.0	0.57	0.03	5.2

Microarchitectural Analysis: TPC-H q9


```
select ...
from lineitem, orders, partsupp,
    supplier, part, nation
where s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_name like '%green%'
```

	cycles	IPC	instr.	L1 miss	LLC miss	branch miss	mem. stall cycles
Typer	74	0.6	42	1.7	0.46	0.34	42
Tectorwise	56	1.3	76	2.1	0.47	0.39	18

Stall Cycles

OLAP Throughput

- < Computation: compiled code can keep data in CPU registers
- > Parallel data access: vectorisation is better at generating parallel cache misses
- = *SIMD*: easier to apply, though gains are limited
- = Parallelization: both scale well
- = Hardware platforms: Skylake, Knights Landing, and AMD Ryzen are similar
- → overall performance similar on OLAP, no clear winner

Other Aspects Are Probably More Important

- < OLTP: compilation results in fast stored procedures
- < Language support: compilation enables seamless integration of different languages
- > Compile time: vectorisation has no JIT-compilation overhead
- > *Profiling*: Runtime can easily be attributed to vectorised primitives
- > (Micro-)adaptivity: vectorisation allows primitives to be swapped mid-flight

for optimal performance, one needs a hybrid engine that combines both approaches

If You Are New to TUM

www.in.tum.de/academic-advising

Have a look at the "Let's talk about ..." series.

References

Z-order curve: https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/?

sc_channel=sm&sc_campaign=zackblog&sc_country=global&sc_geo=global&sc_category=rd s&sc_outcome=aware&adbsc=awsdbblog_social_20170517_72417147&adbid=86489551773 3470208&adbpl=tw&adbpr=66780587

Bloom Filter https://www.kdnuggets.com/2016/08/gentle-introduction-bloom-filter.html

Execution Engine Comparison

Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask, Kersten et al., PVLDB 2018