
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im
WiSe 19/20

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1920/DBSandere/?lang=en

Sheet 12

Exercise 1

10 20

4 7 15 25

17 19 21 229 131 2 5 6 27

Insert 14, 18 and then 3 into the depicted B-Tree (degree i = 1).

Solution:
After inserting 14:

14

After inserting 18:

14

18

After inserting 3:

14

18

1



Exercise 2

Give a permutation of the numbers 1 to 24, such that when inserted into an empty B-Tree
(degree i = 2) the height of the tree (number of layers) of the B-Tree is minimal. Draw
the resulting tree.

Solution:
To be of minimal height. The resulting root of the tree must contain 5,10,15 and 20.
On possible option is the following:

• 1,2,5,6,7: a new root containing 5 is created

• 10,11,12: 5 and 10 are in the root node now

• 15,16,17: 1,10 and 15 are in the root node now

• 20,21,22: 1,10,15,20 are in the root node now

• Now, we can insert the remaining keys in an arbitrary order

Exercise 3

Calculate the optimal degree i and the number of required levels (also known as the“height”
of the tree) for a B-Tree with the following properties:

• The B-Tree should store all humans currently living on earth (assume an even 10
billion).

• For each human we store the name, country and a unique identifier (100 Byte per
human). The unique identifier will be used as the key an requires 8 Byte to store.

• The degree i of inner and leaf nodes may be different.

• Each node has to fit on a 16KB (16000 Byte) page.

• The page ids in the inner nodes require 8 Byte.

• This time (unlike in the lecture), we want to be precise: an inner node with n tuples
requires n + 1 page ids to identify its children (in the lecture we simplifies this and
assumed that a node with n tuples has n page ids).

Solution:

For leaf nodes, we simply have to store the tuples themselves and we can calculate the
number of tuples fitting on a single leaf node as follows: leaf size ÷ tuple size = 16KB ÷
100B = 160. The degree of a node is half of that: 80. Using this, we can calculate
the number of leaf nodes required to store 10 billion human tuples: number of humans ÷
tuples per leaf = 10e9 ÷ 160 = 62500000.

…V0 V1 V2

D1

S1

D2

S2

Figure 1: Struktur eines B-Baum Knotens

Next we calculate how many separator keys (x) can fit on an inner node. From this we can
derive the fan-out of an inner node (how many pages can be addresses by an inner node).
Using the structure of an inner node (Figure 1), we can create the following formula:

2



x ∗ (key size + tuple size) + (x + 1) ∗ page id size ≤ 16KB

x ∗ (8B + 100B) + (x + 1) ∗ 8B ≤ 16KB

x ∗ 108B + x ∗ 8B + 8B ≤ 16KB

x ∗ 116B ≤ 16KB − 8B

x ≤ (16KB − 8B) ÷ 116B ≈ 137.86

Hence, we can store 137 tuples in an inner node (because we need to round up, because
we only store “complete” tuples) and can therefore address 137 + 1 = 138 child pages.
Therefore, a total of 62500000÷ 138 = 456205 inner pages are required to store each page
on the leaf level. But these 426205 pages need to be addresses as well . . .

To figure out the height of the tree (number of layers, not counting the root), we can either
continuously divide until there is only one page left: 62500000÷138÷138÷138÷138 = 0.17
and see that there is one leaf level and four layers of inner nodes. Or, we can use a
logarithm: log138(62500000) = 3.64 to derive the number of inner layers (rounded up: 4).
In both cases we end up with 5 layers (4 inner, 1 leaf). Therefore, the tree has a height of
4, because the root does not count.

3


