TU Miinchen, Fakultat fiir Informatik
Lehrstuhl I1l: Datenbanksysteme "-m
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im

Sheet 13

Exercise 1

WiSe 19/20
Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1920/DBSandere/?lang=en

[Same as in the previous sheet, but with a B+-Tree, instead of a B-Tree.] Calculate the
optimal degree i and the number of required levels (also known as the “height” of the tree)
for a B+-Tree with the following properties:

The B+-Tree should store all humans currently living on earth (assume an even 10
billion).

For each human we store the name, country and a unique identifier (100 Byte per
human). The unique identifier will be used as the key an requires 8 Byte to store.

The degree i of inner and leaf nodes may be different.
Each node has to fit on a 16KB (16000 Byte) page.
The page ids in the inner nodes require 8 Byte.

This time (unlike in the lecture), we want to be precise: an inner node with n tuples
requires n + 1 page ids to identify its children (in the lecture we simplifies this and
assumed that a node with n tuples has n page ids).

Solution:

For leaf nodes, we simply have to store the tuples themselves and we can calculate the
number of tuples fitting on a single leaf node as follows: leaf size + tuple_size = 16KB +
100B = 160. The degree of a node is half of that: 80. Using this, we can calculate
the number of leaf nodes required to store 10 billion human tuples: number_of_humans -+
tuples_per_leaf = 10e9 + 160 = 62500000. So far, nothing has changed compared to the
B-Tree.

Vo |[S1]|Vq1]|S2]|Vq

Figure 1: B4+-Tree node structure

Next we calculate how many separator keys () can fit on an inner node. From this we can
derive the fan-out of an inner node (how many pages can be addresses by an inner node).
Using the structure of an inner node (Figure , we can create the following formula:

x x key_size + (x 4+ 1) * page_id_size < 16KB
zx8B+ (z+1)x8B < 16KB
zx8B+x*x8B+8B < 16KB
zx16B < 16KB — 8B
x < (16KB — 8B) = 16B = 999.5

Hence, we can store 999 separator keys in an inner node (because we need to round up,
because we only store “complete” tuples) and can therefore address 999 + 1 = 1000 child
pages. Therefore, a total of 62500000 <+ 1000 = 62500 inner pages are required to store
each page on the leaf level. But these 62500 pages need to be addresses as well ...

To figure out the height of the tree (number of layers, not counting the root), we can either
continuously divide until there is only one page left: 62500000--1000-+-1000-=-1000 = 0.0625
and see that there is one leaf level and three layers of inner nodes. Or, we can use a
logarithm: logyg0(62500000) = 2.3 to derive the number of inner layers (rounded up: 3).
In both cases we end up with 4 layers (3 inner, 1 leaf). Therefore, the tree has a “height”
of 3, because the root does not count.

Exercise 2

Please insert all tuples from the Students relation from the university schema into a hash
table of size 5 (as in the figure). Each page can hold up to 2 tuples. As a means of handling
collisions, linear chaining should be employed.

pO

pl

p2

p3

== ===

p4

a) Use the following hash function: hash(key) = key mod 5.

b) Try using a better hash function: hash(key) = crc32(key) mod 5 To calculate the
CRC32 of a key, you can use a website on the internet, for example: https://
crccalc.com/?crc=24002&method=crc32&datatype=ascii&outtype=dec

Did the better hash function, result in a more evenly balanced hash table?

Solution:

https://crccalc.com/?crc=24002&method=crc32&datatype=ascii&outtype=dec
https://crccalc.com/?crc=24002&method=crc32&datatype=ascii&outtype=dec

26120 Fichte 10

27550 Schopenhauer 6

29555 Feuerbach 2

pS

29120 Theophrastos 2

p6

p0
26830 Aristoxenos 8
28106 Carnap 3
P 1
24002 Xenokrates 18
P2 1
25403 Jonas 12
& 1
pe 1

