
Code Generation for

AMD GPUs

Nicolai Hähnle

2 |

About Me

• Got into open-source 3D driver development for the ATI R300 via reverse engineering

• PhD in mathematics at EPFL in Lausanne

• Research in (integer) linear optimization, combinatorial optimization, and electronic design automation

• At AMD in various roles since 2015

• Today: Architect on the Shader Compiler Team

3 |

Agenda

• The GPU programming ecosystem

• What is a GPU?

• Generating code for a GPU

The GPU Programming Ecosystem

5 |

A Graphics Programmer’s View

• Write shaders in a high-level language: HLSL, GLSL, growing long tail

• Compile to an API-specific, vendor-agnostic representation: SPIR-V, DXIL, WGSL

• Pass this representation to the API at application runtime

• vkCreateGraphicsPipelines() etc.

• Get an opaque handle to the resulting “pipeline”

• Pipelines contain GPU binaries, but also:

• Binding information: How to access “global” variables

• Fixed function state: Vertex input state, pixel blending modes, etc.

Buffer<float4> inputBuffer;
RWBuffer<float> outputBuffer;

[numthreads(8,4,1)]
void CSMain(uint3 did : SV_DispatchThreadId)
{

outputBuffer[did.x] = inputBuffer[did.x][did.y];
}

6 |

A Compute Programmer’s View

• “Kernels” instead of “shaders”

• Details depend on the API / programming environment

• OpenCL

• Separate source files, like graphics APIs

• But kernels can optionally be precompiled to GPU binary

• Most other environments aim for single-source compilation

and fat binaries

• HIP/CUDA
• Annotated functions are compiled as kernels under the hood by a (semi-custom)

C++ compiler

• Invoke kernels using magic “triple chevron” syntax or via a more traditional

LaunchKernel runtime API function that accepts a (semi-magic) function pointer

• OpenMP
• #pragma omp on loops in C/C++/Fortran

• Compiler splits code below function granularity and inserts code to invoke kernels

• SYCL

• C++AMP

• etc.

7 |

Some Paths to GPU binaries

And many more…

What is a GPU?

9 |

High-level view

INFINITY FABRIC

Shader Engines

Shader Engines

Shader Engines

Shader Engines

DISPLAY ENGINEMULTIMEDIA ENGINEPCIE GEN 4

Graphics Command Processor
ACE

Geometry Processor
ACE

ACE

HWS

DMA

ACE

Shader Engines

Rasterizer

L1

Prim Unit

RB+ RB+

RB+ RB+
L1

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA
R
A

Rasterizer

L1

Prim Unit

RB+ RB+

RB+ RB+
L1

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Rasterizer

L1

Prim Unit

RB+ RB+

RB+ RB+
L1

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Shader Engines

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Prim Unit

L1

Rasterizer

RB+ RB+

RB+ RB+
L1

Prim Unit

L1

Rasterizer

RB+ RB+

RB+ RB+
L1

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Prim Unit

L1

Rasterizer

RB+ RB+

RB+ RB+
L1

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

Dual Compute Unit

RA

RA

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

4
 x

 1
6

 b
it

M
em

o
ry

 In
te

rf
ac

e

IN
F

IN
IT

Y
 C

A
C

H
E

4
 x

 1
6

 b
it

M
em

o
ry

 In
te

rf
ac

e

IN
F

IN
IT

Y
 C

A
C

H
E

4
 x

 1
6

 b
it

M
em

o
ry

 In
te

rf
ac

e

IN
F

IN
IT

Y
 C

A
C

H
E

4
 x 16

 bit
M

em
o

ry In
terface

IN
F

IN
IT

Y
 C

A
C

H
E

4
 x 16

 bit
M

em
o

ry In
terface

IN
F

IN
IT

Y
 C

A
C

H
E

4
 x 16

 bit
M

em
o

ry In
terface

IN
F

IN
IT

Y
 C

A
C

H
E

IN
T

E
R

C
O

N
N

E
C

T
IN

T
E

R
C

O
N

N
E

C
T

IN
T

E
R

C
O

N
N

E
C

T
IN

T
E

R
C

O
N

N
E

C
T

IN
T

E
R

C
O

N
N

E
C

T
IN

T
E

R
C

O
N

N
E

C
T

10 |

The RDNA Workgroup Processor

• Think of an RDNA WGP as a CPU with:

• 4 cores: Each with a 32-wide SIMD unit

• Each core supports deep SMT – up to 16 “threads” or “waves” per core

• Wave32 and Wave64 modes

• Wave64 operates on 64-wide vectors

• In the general case by issuing vector instructions twice (though there are significant optimizations)

SIMD32SALU SIMD32SALU

SIMD32 L0$
Texture

Raytracing
I$
K$

LDS
Local

Scratchpad

SALU SIMD32SALU

L0$
Texture

Raytracing

11 |

RDNA ISA

• ~106 32-bit scalar registers

• 256 vector registers

• 32x32-bit or 64x32-bit depending on wave mode

• Register files are arrays

• Successive registers can be combined to 64-bit and larger values

• Some alignment requirements apply

• Indirect indexing is possible

• Large set of scalar and vector ALU instructions

• Scalar branch instructions

• Full set of vector memory instructions

• Full scatter/gather capabilities

• Image format conversion and texture sampling

• Raytracing acceleration

• Scalar loads for constant data

12 |

SIMT Execution

• “Threads” are mapped to lanes of a vector – the wave

• Program counter and instruction fetch, decode, and issue is per wave – not per lane

• Prefer terminology “wave / subgroup” and “lane / invocation” unless clear from the context

• In RDNA:

• Every vector instruction is implicitly masked by the EXEC register

• Control flow is implemented by scalar instructions operating on EXEC

void main()
{

if (cb.material == 0) {
color = texture (sampler2D (t0, s0), uv);

} else {
color = vec4(1,0,0,1);

}
}

13 |

Instruction Execution: CPU vs. GPU

CPU GPU

Branch prediction ✓ ×

Speculative execution ✓ ×

Out-of-order execution ✓ ×

Register renaming ✓ ×

Why?

14 |

Memory Accesses

• Memory instructions increment counters at issue

• Counters are decremented when instructions retire

• Different counters used for different instruction classes

• Some instruction classes remain in-order within the class,

others can retire out of order

• Software must wait explicitly for those counters

• Example:

s_waitcnt vmcnt(4)

Wait until the “vmcnt” counter is <= 4

15 |

Memory Hierarchy: CPU vs. GPU

Navi31Zen 4 CCD

L3$ / Infinity Cache

L2$

L1D$ / Vector $

Local Scratchpad N/A

Physical Vector Registers

Physical Registers

N/A

• Diagram shows total storage sizes for unharvested configurations (all 8 cores / all 48 WGPs)

• CPU and GPU shown at different scales

• Why the qualitative difference? How does it affect code execution and code generation?

Generating Code for a GPU

17 |

Generating Code for a GPU – Selected Topics

• Implementing graphics APIs

• Satisfying the ISA: Wait insertion

• Control flow lowering

• Register allocation and memory instruction scheduling

Implementing graphics APIs

19 |

A Very Real Example

SPIR-V RDNA ISA

20 |

Shader ABI

• Some registers are initialized by hardware when a wave is launched

• The compiler and driver collaborate to configure this initialization

s0

s1

s2

s3

… Descriptor

Descriptor

…

Descriptor

Descriptor

…

Descriptor Set 1 (in memory)

Descriptor Set 0 (in memory)

21 |

Trip through the compiler pipeline

22 |

Trip through the compiler pipeline

23 |

Trip through the compiler pipeline

24 |

Trip through the compiler pipeline

25 |

Trip through the compiler pipeline

26 |

Trip through the compiler pipeline

27 |

Trip through the compiler pipeline

28 |

Trip through the compiler pipeline

29 |

Trip through the compiler pipeline

30 |

A Word on Intermediate Representations

• Our compiler uses a kind of “LLVM+X”

• LLVM IR with additional “intrinsics” and metadata for GPU-specific operations

• Designing an IR is an art

• A lot of the compiler flow is concerned with lowering these operations away

• The IR must fit the lowering flow and vice versa

• It must also serve other transforms (“optimizations”!)

• Implementing an IR is an art

• Ergonomics matter

• Compile-time matters

• MLIR is a great innovation in this area

• Do the “IR implementation” only once (the “substrate”)

• Developers can focus on designing purpose-built IRs (the “dialects”)

• But MLIR doesn’t get everything right (yet?) – and is not compatible

with LLVM…

31 |

Tessellation Control Shader Outputs

• Implementing graphics APIs is often a conceptually straightforward lowering process

• TCS outputs are a simple example of an exception

• Multiple TCS invocations can be launched for the same “patch” (triangle / quad)

• TCS invocations can (but often don’t) communicate via TCS outputs

…

32 |

TCS Output Lowering

• TCS outputs must ultimately be written to memory, from where they are read by the next pipeline stage

• We could just translate TCS output accesses to memory accesses

• Challenge: If TCS outputs are read back from TCS, reading them from memory is quite slow

• Solution:

• TCS outputs go to LDS (local scratchpad)

• At the end of TCS, all outputs are read back from LDS and then written to memory

• But: Should we always do this, or only if an output is read from?

• Ordering between invocations still matters if there are aliased stores

• Consider cacheline effects

Wait Insertion

34 |

Wait Insertion

• Late compiler pass to insert s_waitcnt instructions

required for correctness

• Why a late pass?

• What does this mean for IR design?

• Algorithmically:

• On-the-fly computation of “pending” registers and associated

counter values within basic blocks

• Fix point iteration for finding “pending” state at basic block

boundaries

• (Why) Do we need a fix point iteration?

35 |

Tweaking the Fix Point by Waiting Earlier

• Fix a false stall that affected GCN by moving the wait to before the loop

• RDNA addressed this issue by separating counters for loads vs. stores

Control Flow Lowering

37 |

Control Flow Lowering

• The wave must follow a control-flow path that encompasses the paths of all individual threads that have

been mapped to its lanes

• Compiler transforms the CFG accordingly and inserts bitmask manipulation code

• Analysis which values are uniform vs. divergent

• Fix point iteration with some tricky aspects due to “temporal divergence”

• Can sometimes avoid the CFG transform if branch conditions are uniform

1

23 4

5

6

8

7

Original CFG Wave-transformed,
assuming divergent branches

1

2
3 4

5

7

8

6

Register Allocation and Memory Instruction Scheduling

39 |

Register Allocation Size Matters

• RDNA has 256 architectural vector registers that can be accessed by instructions

• There are typically 1024 physical vector registers per SIMD

• Most shaders use far less than 256 vector registers

• Vector registers are allocated to waves at launch according to their register size

• This affects occupancy, with profound impact on performance

• Example:

• With 64 VGPRs in Wave32 mode, all 16 wave slots can be used

• With 64 VGPRs in Wave64 mode, only 8 wave slots can be used

• With 80 VGPRs in Wave32 mode, only 12 wave slots can be used

40 |

Latency hiding via Occupancy vs. Instruction Scheduling

• Memory latency is high, so hiding that latency is important

• Idea #1: Move loads as early as possible?

• Other instructions of the wave can execute while the load is in flight

• Normally an improvement if it doesn’t change the register budget

• What if it requires us to grow the register budget?

• Idea #2: Maximize the number of loads in flight (memory-level parallelism)

• There are broadly two ways of doing that:
• Increase the number of waves in flight → want a smaller register budget

• Increase the number of loads in flight per wave → want a larger register budget

• Interacts with loop unrolling
• One of the major effects of loop unrolling on the GPU is that it can unlock memory parallelism

• Like out-of-order execution on a CPU

• In practice:

• Do a bit of everything

• Allocation granularity and “occupancy boundaries” are often in our favor

• Second-order effects on the cache hierarchy can easily throw a wrench in any theory

Thank you!

42 |

COPYRIGHT AND DISCLAIMER

©2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Code Generation for AMD GPUs
	Slide 2: About Me
	Slide 3: Agenda
	Slide 4: The GPU Programming Ecosystem
	Slide 5: A Graphics Programmer’s View
	Slide 6: A Compute Programmer’s View
	Slide 7: Some Paths to GPU binaries
	Slide 8: What is a GPU?
	Slide 9: High-level view
	Slide 10: The RDNA Workgroup Processor
	Slide 11: RDNA ISA
	Slide 12: SIMT Execution
	Slide 13: Instruction Execution: CPU vs. GPU
	Slide 14: Memory Accesses
	Slide 15: Memory Hierarchy: CPU vs. GPU
	Slide 16: Generating Code for a GPU
	Slide 17: Generating Code for a GPU – Selected Topics
	Slide 18: Implementing graphics APIs
	Slide 19: A Very Real Example
	Slide 20: Shader ABI
	Slide 21: Trip through the compiler pipeline
	Slide 22: Trip through the compiler pipeline
	Slide 23: Trip through the compiler pipeline
	Slide 24: Trip through the compiler pipeline
	Slide 25: Trip through the compiler pipeline
	Slide 26: Trip through the compiler pipeline
	Slide 27: Trip through the compiler pipeline
	Slide 28: Trip through the compiler pipeline
	Slide 29: Trip through the compiler pipeline
	Slide 30: A Word on Intermediate Representations
	Slide 31: Tessellation Control Shader Outputs
	Slide 32: TCS Output Lowering
	Slide 33: Wait Insertion
	Slide 34: Wait Insertion
	Slide 35: Tweaking the Fix Point by Waiting Earlier
	Slide 36: Control Flow Lowering
	Slide 37: Control Flow Lowering
	Slide 38: Register Allocation and Memory Instruction Scheduling
	Slide 39: Register Allocation Size Matters
	Slide 40: Latency hiding via Occupancy vs. Instruction Scheduling
	Slide 41: Thank you!
	Slide 42
	Slide 43

