
1

Code Generation for Data Processing
Lecture 1: Introduction and Interpretation

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2022/23

2

Module “Code Generation for Data Processing”

Learning Goals

I Getting from an intermediate code representation to machine code
I Designing and implementing IRs and machine code generators
I Apply for: JIT compilation, query compilation, ISA emulation

Prerequisites

I Computer Architecture, Assembly ERA, GRA/ASP

I Databases, Relational Algebra GDB

I Beneficial: Compiler Construction, Modern DBs

3

Topic Overview

Introduction
I Introduction and Interpretation
I Compiler Front-end

Intermediate Representations

I IR Concepts and Design
I LLVM-IR
I LLVM Transforms and Analyses

Compiler Back-end

I Instruction Selection
I Register Allocation
I Linker, Loader, Debuginfo

Applications

I JIT-compilation + Sandboxing
I Query Compilation
I Binary Translation

4

Lecture Organization

I Lecturer: Dr. Alexis Engelke engelke@in.tum.de
I Time slot: Thu 10-14, 02.11.018
I Material: https://db.in.tum.de/teaching/ws2223/codegen/

Exam
I Written exam, 90 minutes, no retake, date TBD
I (Might change to oral on very low registration count)

https://db.in.tum.de/teaching/ws2223/codegen/

5

Exercises

I Weekly homework, often with programming exercise
I Submission via e-mail: engelke+cghomework@in.tum.de

I Probably no explicit grading, feedback on best effort
I Exercise sessions to present and discuss solutions

Grade Bonus
I Requirement: N − 2 “sufficiently working” homework submissions

and at least 2 presentations of homework in class
I Bonus: grades in [1.3; 4.0] improved by 0.3

6

Why study compilers?

I Critical component of every system, functionality and performance
I Compiler mostly alone responsible for using hardware well

I Brings together many aspects of CS:
I Theory, algorithms, systems, architecture, software engineering, (ML)

I New developments/requirements pose new challenges
I New architectures, environments, language concepts, . . .

I High complexity!

7

Compiler Lectures @ TUM

Compiler Construction
IN2227, SS, THEO

Front-end, parsing, seman-
tic analyses, types

Program Optimization
IN2053, WS, THEO

Analyses, transformations,
abstract interpretation

Virtual Machines
IN2040, SS, THEO

Mapping programming
paradigms to IR/bytecode

Programming Languages
CIT3230000, WS

Implementation of ad-
vanced language features

Code Generation
CIT3230001, WS

Back-end, machine code
generation, JIT comp.

8

Why study code generation?

I Frameworks (LLVM, . . .) exist and are comparably good,
but often not good enough (performance, features)
I Many systems with code gen. have their own back-end
I E.g.: V8, WebKit FTL, .NET RyuJIT, GHC, Zig, QEMU, Umbra, . . .

I Machine code is not the only target: bytecode
I Often used for code execution
I E.g.: V8, Java, .NET MSIL, BEAM (Erlang), Python, MonetDB, eBPF, . . .
I Allows for flexible design
I But: efficient execution needs machine code generation

9

Proebsting’s Law

“Compiler advances double computing power every 18 years.”

– Todd Proebsting, 19981

I Still optimistic; depends on number of abstractions

1http://proebsting.cs.arizona.edu/law.html

http://proebsting.cs.arizona.edu/law.html

10

Motivational Example: Brainfuck

I Turing-complete esoteric programming language, 8 operations
I Input/output: . ,
I Moving pointer over infinite array: < >
I Increment/decrement: + -
I Jump to matching bracket if (not) zero: []

++++++[->++++++<]>.

I Execution with pen/paper? :(

11

Program Execution

Program Hardware Result

Programs
I High flexibility (possibly)

I Many abstractions (typically)

I Several paradigms

Hardware/ISA

I Low-level interface
I Few operations, imperative
I “Not easy” to write

12

Motivational Example: Brainfuck – Interpretation

I Write an interpreter!

unsigned char state[10000];
unsigned ptr = 0, pc = 0;
while (prog[pc])
switch (prog[pc++]) {
case ’.’: putchar(state[ptr]); break;
case ’,’: state[ptr] = getchar(); break;
case ’>’: ptr++; break;
case ’<’: ptr--; break;
case ’+’: state[ptr]++; break;
case ’-’: state[ptr]--; break;
case ’[’: state[ptr] || (pc = matchParen(pc, prog)); break;
case ’]’: state[ptr] && (pc = matchParen(pc, prog)); break;
}

13

Program Execution

Compiler

Program Compiler Program

I Translate program to other lang.
I Might optimize/improve program

I C, C++, Rust → machine code
I Python, Java → bytecode

Interpreter

Program Interpreter Result

I Directly execute program
I Computes program result

I Shell scripts, Python bytecode,
machine code (conceptually)

I Multiple compilation steps can precede the “final interpretation”

14

Compilers

I Targets: machine code, bytecode, or other source language
I Typical goals: better language usability and performance

I Make lang. usable at all, faster, use less resources, etc.

I Constraints: specs, resources (comp.-time, etc.), requirements (perf., etc.)

I Examples:
I “Classic” compilers source → machine code
I JIT compilation of JavaScript, WebAssembly, Java bytecode, . . .
I Database query compilation
I ISA emulation/binary translation

15

Compiler Structure: Monolithic

Source
Program Compiler Machine

Code

Errors

I Inflexible architecture, hard to retarget

16

Compiler Structure: Two-phase architecture

Source
Program Front-end Back-end Machine

Code
IR

Errors

Front-end
I Parses source code
I Detect syntax/semantical errors
I Emit intermediate representation

encode semantics/knowledge
I Typically: O(n) or O(n log n)

Back-end
I Translate IR to target architecture
I Can assume valid IR (no errors)
I Possibly one back-end per arch.
I Contains NP-complete problems

17

Compiler Structure: Three-phase architecture

Source
Program Front-end Optimizer Back-end Machine

Code
IR IR

Errors

I Optimizer: analyze/transform/rewrite program inside IR

I Conceptual architecture: real compilers typically much more complex
I Several IRs in front-end and back-end, optimizations on different IRs
I Multiple front-ends for different languages
I Multiple back-ends for different architectures

18

Compiler Front-end

1. Tokenizer: recognize words, numbers, operators, etc. Re
I Example: a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

2. Parser: build (abstract) syntax tree, check for syntax errors CFG
I Syntax Tree: describe grammatical structure of complete program

Example: expr("a", op("+"), expr("b", op("*"), expr("c"))
I Abstract Syntax Tree: only relevant information, more concise

Example: plus("a", times("b", "c"))

3. Semantic Analysis: check types, variable existence, etc.

4. IR Generator: produce IR for next stage
I This might be the AST itself

19

Compiler Back-end

1. Instruction Selection: map IR operations to target instructions
I Use target features: special insts., addressing modes, . . .
I Still using virtual/unlimited registers

2. Instruction Scheduling: optimize order for target arch.
I Start memory/high-latency earlier, etc.
I Requires knowledge about micro-architecture

3. Register Allocation: map values to fixed register set/stack
I Use available registers effectively, minimize stack usage

20

Motivational Example: Brainfuck – Front-end

I Need to skip comments
I Bracket searching is expensive/redundant

I Idea: “parse” program!
I Tokenizer: yield next operation, skipping comments
I Parser: find matching brackets, construct AST

+[[-]>]

root

+ []

[]

-

>

21

Motivational Example: Brainfuck – AST Interpretation

I AST can be interpreted recursively

struct node { char kind; int cldCnt; struct node* cld; };
struct state { unsigned char* arr; size_t ptr; };
void donode(struct node* n, struct state* s) {
switch (n->kind) {
case ’+’: s->arr[s->ptr]++; break;
// ...
case ’[’: while (s->arr[s->ptr]) children(n); break;
case 0: children(n); break; // root
}

}
void children(struct node* n, struct state* s) {
for (int i = 0; i < n->cldCnt; i++) donode(n->cld + i, s);

}

22

Motivational Example: Brainfuck – Optimization

I Inefficient sequences of +/-/</> can be combined
I Trivially done when generating IR

I Fold patterns into more high-level operations
I [-] = set zero
I [>] = find next zero (memchr)
I [->+>+«] = add to next two siblings, set zero
I [->+++<] = add 3 times to next sibling, set zero
I . . .

23

Motivational Example: Brainfuck – Optimization

I Fold offset into operation
I right(2) add(1) = addoff(2, 1) right(2)
I Also possible with loops

I Analysis: does loop move pointer?
I Loops that keep position intact allow more optimizations
I Maybe distinguish “regular loops” from arbitrary loops?

I Get rid of all “effect-less” pointer movements

I Combine arithmetic operations, disambiguate addresses, etc.

24

Motivational Example: Brainfuck – Bytecode

I Tree is nice, but rather inefficient flat and compact bytecode
I Avoid pointer dereferences/indirections; keep code size small

I Superinstructions: combine common sequences to one instruction
I Maybe dispatch two instructions at once?

I switch (ops[pc] | ops[pc] « 8)

25

Motivational Example: Brainfuck – Threaded Interpretation
I Simple switch–case dispatch has lots of branch misses
I Threaded interpretation: at end of a handler, jump to next op

struct op { char op; char data; };
struct state { unsigned char* arr; size_t ptr; };
void threadedInterp(struct op* ops, struct state* s) {

static const void* table[] = { &&CASE_ADD, &&CASE_RIGHT, };
#define DISPATCH do { goto *table[(++pc)->op]; } while (0)

struct op* pc = ops;
DISPATCH;

CASE_ADD: s->arr[s->ptr] += pc->data; DISPATCH;
CASE_RIGHT: s->arr += pc->data; DISPATCH;
}

26

Fast Interpretation

I Key technique to “avoid” compilation to machine code

I Preprocess program into efficiently executable bytecode
I Easily identifiable opcode, homogeneous structure
I Can be linear (fast to execute), but trees also work

I Perhaps optimize – if it’s worth the benefit
I Fold constants, combine instructions, . . .
I Consider superinstructions for common sequences

I For very cold code: avoid transformations at all
I Use threaded-interpretation to avoid branch misses

27

Compiler: Surrounding – Compile-time

I Typical environment for a C/C++ compiler:

fileA.c fileA.i
Preprocessor

cpp
fileA.s

C-Compiler

cc1
fileA.o

Assembler

as
exec

Linker

ld

I Calling Convention: interface with other objects/libraries
I Build systems, dependencies, debuggers, etc.
I Compilation target machine (hardware, VM, etc.)

28

Compiler: Surrounding – Run-time

I OS interface (I/O, . . .)
I Memory management (allocation, GC, . . .)
I Parallelization, threads, . . .
I VM for execution of virtual assembly (JVM, . . .)
I Run-time type checking
I Error handling: exception unwinding, assertions, . . .
I Reflection, RTTI

29

Motivational Example: Brainfuck – Runtime Environment

I Needs I/O for . and ,

I Memory management: infinitely sized array
I Allocate on demand (easy?)

I What if main memory or address space is insufficient?
I Deallocation of empty pages?

I Error handling: unmatched brackets

30

Compilation point: AoT vs. JIT

Ahead-of-Time (AoT)

I All code has to be compiled
I No dynamic optimizations
I Compilation-time secondary

concern

Just-in-Time (JIT)

I Compilation-time is critical
I Code can be compiled on-demand

I Incremental optimization, too
I Handle cold code fast
I Dynamic specializations possible
I Allows for eval()

Various hybrid combinations possible

31

Compiler Design: Effect of Languages – Imperative

I Step-by-step execution of program
modification of state

I Close to hardware execution model
I Direct influence of result

I Tracking of state is complex
I Dynamic typing: more complexity
I Limits optimization possibilities

void addvec(int* a, const int* b) {
for (unsigned i = 0; i < 4; i++)
a[i] += b[i]; // vectorizable?

}

func:
mov [rdi], rsi
mov [rdi+8], rdx
mov [rdi], 0 // redundant?
ret

32

Compiler Design: Effect of Languages – Declarative

I Describes execution target
I Compiler has to derive good

mapping to imperative hardware

I Allows for more optimizations
I Mapping to hardware non-trivial

I Might need more stages
I Preserve semantic info for opt!

I Programmer has less “control”

select s.name
from studenten s
where exists (select 1

from hoeren h
where h.matrno=s.matrno)

let rec fac = function
| 0 | 1 -> 1
| n -> n * fac (n - 1)

33

Introduction and Interpretation – Summary

I Compilation vs. interpretation and combinations
I Compilers are key to usable/performant languages
I Target language typically machine code or bytecode
I Three-phase architecture widely used
I Interpretation techniques: bytecode, threaded interpretation, . . .
I JIT compilation imposes different constraints

34

Introduction and Interpretation – Questions

I What is typically compiled and what is interpreted? Why?
I PostScript, C, JavaScript, HTML, SQL

I What are typical types of output languages of compilers?
I How does a compiler IR differ from the source input?
I What is the impact of the language paradigm on optimizations?
I What are important factors for an efficient interpreter?
I What are key differences between AoT and JIT compilation?

	Introduction and Interpretation
	Organization
	Overview

