
272

Code Generation for Data Processing
Lecture 9: Unwinding and Debuginfo

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2022/23

273

Motivation: Meta-Information on Program

I Machine code suffices for execution → not true

I Needs program headers and entry point
I Linking with shared libraries needs dynamic symbols and interpreter

I Stack unwinding needs information about the stack
I Size of each stack frame, destructors to be called, etc.
I Vital for C++ exceptions, even for non-C++ code

I Stack traces require stack information to find return addresses
I Use cases: coredumps, debuggers, profilers

I Debugging experience enhanced by variables, files, lines, statements, etc.

274

Adding Meta-Information with GCC

-g
-fexceptions

-fasynchronous-unwind-tables

I -g supports different formats and levels (and GNU extensions)
I Exceptions must work without debuginfo
I Unwinding through code without exception-support must work

275

Stack Unwinding

I Needed for exceptions (_Unwind_RaiseException) or forced unwinding

I Search phase: walk through the stack, check whether to stop at each frame
I May depend on exception type, ask personality function
I Personality function needs extra language-specific data
I Stop once an exception handler is found

I Cleanup phase: walk again, do cleanup and stop at handler
I Personality function indicates whether handler needs to be called
I Can be for exception handler or for calling destructors
I If yes: personality function sets up registers/sp/pc for landing pad
I Non-matching handler or destructor-only: landing pad calls _Unwind_Resume

276

Stack Unwinding: Requirements

I Given: current register values in unwind function

I Need: iterate through stack frames
I Get address of function of the stack frame
I Get pc and sp for this function
I Find personality function and language-specific data
I Maybe get some registers from the stack frame
I Update some registers with exception data

I Increased difficulty: stepping through signal handler

277

Stack Unwinding: setjmp/longjmp

I Simple idea – all functions that run code during unwinding do:
I Register their handler at function entry
I Deregister their handler at function exit

I Personality function sets jmpbuf to landing pad
I Unwinder does longjmp

+ Needs no extra information
− High overhead in non-exceptional case

278

Stack Unwinding: Frame Pointer

I Frame pointers allow for fast unwinding

I fp points to stored caller’s fp
I Return address stored adjacent to frame pointer

+ Fast and simple, also without exception
− Not all programs have frame pointers

I Overhead of creating full stack frame
I Causes loss of one register (esp. x86)

I Still needs to find meta-information
I Need to distinguish prologue with wrong info

x86_64:
push rbp
mov rbp, rsp
// ...
mov rsp, rbp
pop rbp
ret

aarch64:
stp x29, x30, [sp, -32]!
mov x29, sp
// ...
ldp x29, x30, [sp], 32
ret

279

Stack Unwinding: Without Frame Pointer

I Given: pc and sp (bottom of stack frame/call frame)
I In parent frames: retaddr − 1 ∼pc and CFA ∼sp

I Need to map pc to stack frame size
I sp+framesize = CFA (canonical frame address – sp at call)
I Stack frame size varies throughout function, e.g. prologue

I Case 1: some register used as frame pointer – CFA constant offset to fp
I E.g., for variable stack frame size

I Case 2: no frame pointer: CFA is constant offset to sp

 Unwinding must restore register values
I Other reg. can act as frame pointer, register saved in other register, . . .
I Need to know where return address is stored

280

Call Frame Information

I Table mapping each instr. to info about registers and CFA

I CFA: register with signed offset (or arbitrary expression)

I Register:
I Undefined – unrecoverable (default for caller-saved reg)
I Same – unmodified (default for callee-saved reg)
I Offset(N) – stored at address CFA+N
I Register(reg) – stored in other register
I or arbitrary expressions

281

Call Frame Information – Example 1

CFA rip rbx rbp . . .

foo:
0x0: push rbx rsp+0x08 [CFA-0x08] same same
0x1: mov ebx, edi rsp+0x10 [CFA-0x08] [CFA-0x10] same
0x3: call bar rsp+0x10 [CFA-0x08] [CFA-0x10] same
0x8: mov eax, ebx rsp+0x10 [CFA-0x08] [CFA-0x10] same
0xa: pop rbx rsp+0x10 [CFA-0x08] [CFA-0x10] same
0xb: ret rsp+0x08 [CFA-0x08] same same

282

Call Frame Information – Example 2

CFA rip rbx rbp . . .

foo:
0x0: push rbp rsp+0x08 [CFA-0x08] same same
0x1: mov rbp, rsp rsp+0x10 [CFA-0x08] same [CFA-0x10]
0x4: shl rdi, 4 rbp+0x10 [CFA-0x08] same [CFA-0x10]
0x8: sub rsp, rdi rbp+0x10 [CFA-0x08] same [CFA-0x10]
0xb: mov rdi, rsp rbp+0x10 [CFA-0x08] same [CFA-0x10]
0xe: call bar rbp+0x10 [CFA-0x08] same [CFA-0x10]

0x13: leave rbp+0x10 [CFA-0x08] same [CFA-0x10]
0x14: ret rsp+0x08 [CFA-0x08] same same

283

Call Frame Information – Example 3

CFA rip rbx rbp . . .

foo:
0x0: sub rsp, 8 rsp+0x08 [CFA-0x08] same same
0x4: test edi, edi rsp+0x10 [CFA-0x08] same same
0x6: js 0x12 rsp+0x10 [CFA-0x08] same same
0x8: call positive rsp+0x10 [CFA-0x08] same same
0xd: add rsp, 8 rsp+0x10 [CFA-0x08] same same

0x11: ret rsp+0x08 [CFA-0x08] same same
0x12: call negative rsp+0x10 [CFA-0x08] same same
0x17: add rsp, 8 rsp+0x10 [CFA-0x08] same same
0x1a: ret rsp+0x08 [CFA-0x08] same same

284

Call Frame Information: Encoding

I Expanded table can be huge
I Contents change rather seldomly

I Mainly in prologue/epilogue, but mostly constant in-between

I Idea: encode table as bytecode
I Bytecode has instructions to create a now row

I Advance machine code location
I Bytecode has instructions to define CFA value
I Bytecode has instructions to define register location
I Bytecode has instructions to remember and restore state

285

Call Frame Information: Bytecode – Example 1

CFA rip rbx

foo:
0: push rbx rsp+8 [CFA-8]
1: mov ebx, edi rsp+16 [CFA-8] [CFA-16]
3: call bar rsp+16 [CFA-8] [CFA-16]
8: mov eax, ebx rsp+16 [CFA-8] [CFA-16]
a: pop rbx rsp+16 [CFA-8] [CFA-16]
b: ret rsp+8 [CFA-8] [CFA-16]

=>

DW_CFA_def_cfa: RSP +8

=>

DW_CFA_offset: RIP -8

=>

DW_CFA_advance_loc: 1

=>

DW_CFA_def_cfa_offset: +16

=>

DW_CFA_offset: RBX -16

=>

DW_CFA_advance_loc: 10

=>

DW_CFA_def_cfa_offset: +8

286

Call Frame Information: Bytecode – Example 2

CFA rip rbp

foo:
0: push rbp rsp+8 [CFA-8]
1: mov rbp, rsp rsp+16 [CFA-8] [CFA-16]
4: shl rdi, 4 rbp+16 [CFA-8] [CFA-16]
8: sub rsp, rdi rbp+16 [CFA-8] [CFA-16]
b: mov rdi, rsp rbp+16 [CFA-8] [CFA-16]
e: call bar rbp+16 [CFA-8] [CFA-16]

13: leave rbp+16 [CFA-8] [CFA-16]
14: ret rsp+8 [CFA-8] [CFA-16]

=>

DW_CFA_def_cfa: RSP +8

=>

DW_CFA_offset: RIP -8

=>

DW_CFA_advance_loc: 1

=>

DW_CFA_def_cfa_offset: +16

=>

DW_CFA_offset: RBP -16

=>

DW_CFA_advance_loc: 3

=>

DW_CFA_def_cfa_register: RBP

=>

DW_CFA_advance_loc: 16

=>

DW_CFA_def_cfa: RSP +8

287

Call Frame Information: Bytecode – Example 3

CFA rip

foo:
0: sub rsp, 8 rsp+8 [CFA-8]
4: test edi, edi rsp+16 [CFA-8]
6: js 0x12 rsp+16 [CFA-8]
8: call positive rsp+16 [CFA-8]
d: add rsp, 8 rsp+16 [CFA-8]

11: ret rsp+8 [CFA-8]
12: call negative rsp+16 [CFA-8]
17: add rsp, 8 rsp+16 [CFA-8]
1a: ret rsp+8 [CFA-8]

=>

DW_CFA_def_cfa: RSP +8

=>

DW_CFA_offset: RIP -8

=>

DW_CFA_advance_loc: 4

=>

DW_CFA_def_cfa_offset: +16

=>

DW_CFA_advance_loc: 13

=>

DW_CFA_remember_state:

=>

DW_CFA_def_cfa_offset: +8

=>

DW_CFA_advance_loc: 1

=>

DW_CFA_restore_state:

=>

DW_CFA_advance_loc: 9

=>

DW_CFA_def_cfa_offset: +8

Remember stack: {}

288

Call Frame Information: Bytecode

I DWARF41 specifies bytecode for call frame information
I Self-contained section .eh_frame (or .debug_frame)
I Series of entries; two possible types distinguished using header

I Frame Description Entry (FDE): description of a function
I Code range, instructions, pointer to CIE, language-specific data

I Common Information Entry (CIE): shared information among multiple FDEs
I Initial instrs. (prepended to all FDE instrs.), personality function, alignment

factors (constants factored out of instrs.), . . .

I readelf --debug-dump=frames <file>
llvm-dwarfdump --debug-frame <file>

41DWARF Debugging Information Committee. DWARF Debugging Information Format Version 5. Feb. 2017. .

http://dwarfstd.org/doc/DWARF5.pdf

289

Call Frame Information: .eh_frame_hdr

I Problem: linear search over – possibly many – FDEs is slow
I Idea: create binary search table over FDEs at link-time

I Ordered list of all function addresses and their FDE
I Unwinder does binary search to find matching FDE

I Separate program header entry: PT_GNU_EH_FRAME
I Unwinder needs loader support to find these

I _dl_find_object or dl_iterate_phdr
I FDEs and indices are cached to avoid redundant lookups

290

Call Frame Information: Assembler Directives

I Compilers produces textual CFI
I Assembler encodes CFI into binary format

I Allows for integration of annotated inline assembly
I Inline-asm also needs CFI directives

I Register numbers specified by psABI

I Wrap function with .cfi_startproc/.cfi_endproc
I Many directives map straight to DWARF instructions

I .cfi_def_cfa_offset 16; .cfi_offset %rbp, -16;
.cfi_def_cfa_register %rbp

291

Call Frame Information: Assembler Directives – Example

int bar(int*);
int foo(unsigned long x) {
int arr[x * 4];
return bar(arr);

}

gcc -O -S foo.c

.globl foo

.type foo, @function
foo:

.cfi_startproc
push rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
mov rbp, rsp
.cfi_def_cfa_register 6
shl rdi, 4
sub rsp, rdi
mov rdi, rsp
call bar
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.size foo, .-foo

292

Unwinding: Other Platforms

I Unwinding depends strongly on OS and architecture

I Linux uses DWARF
I Apple has modified version
I Windows has SEH with kernel-support for unwinding
I IBM AIX has their own format
I AArch32 has another custom format

I Additionally: minor differences for return address, stack handling, . . .

Needs to work reliably for exception handling

293

Debugging: Wanted Features

I Get back trace CFI
I Map address to source file/line

 Line Table

I Show global and local variables

 DIE tree

I Local variables need scope information, e.g. shadowing
I Data type information, e.g. int, string, struct, enum

I Set break point at line/function

 Line Table/

I Might require multiple actual breakpoints: inlining, template expansion
I Step through program by line/statement

 Line Table

294

Line Table

I Map instruction to: file/line/column; start of stmt; start of basic block;
is prologue/epilogue; ISA mode

I Table can be huge; idea: encode as bytecode

I Extracted information are bytecode registers
I Conceptually similar to CFI encoding

I llvm-dwarfdump -v --debug-line or readelf -wlL

295

Debugging: Wanted Features

I Get back trace CFI
I Map address to source file/line Line Table

I Show global and local variables

 DIE tree

I Local variables need scope information, e.g. shadowing
I Data type information, e.g. int, string, struct, enum

I Set break point at line/function Line Table/??
I Might require multiple actual breakpoints: inlining, template expansion

I Step through program by line/statement Line Table

296

DWARF: Hierarchical Program Description

I Extensible, flexible, Turing-complete42 format to describe program

I Forest of Debugging Information Entries (DIEs)
I Tag: indicates what the DIE describes
I Set of attributes: describe DIE (often constant, range, or arbitrary expression)
I Optionally children

I Rough classification:
I DIEs for types: base types, typedef, struct, array, enum, union, . . .
I DIEs for data objects: variable, parameter, constant
I DIEs for program scope: compilation unit, function, block, . . .

42J Oakley and S Bratus. “Exploiting the Hard-Working DWARF: Trojan and Exploit Techniques with No Native Executable Code”.
In: WOOT. 2011. .

https://www.usenix.org/events/woot11/tech/final_files/Oakley.pdf

297

DWARF: Data Types

DW_TAG_structure_type [0x2e]
DW_AT_byte_size (0x08)
DW_AT_sibling (0x4a)
DW_TAG_member [0x37]

DW_AT_name ("x")
DW_AT_type (0x4a "int")
DW_AT_data_member_location (0x00)

DW_TAG_member [0x40]
DW_AT_name ("y")
DW_AT_type (0x4a "int")
DW_AT_data_member_location (0x04)

DW_TAG_base_type [0x4a]
DW_AT_byte_size (0x04)
DW_AT_encoding (DW_ATE_signed)
DW_AT_name ("int")

DW_TAG_pointer_type [0xb1]
DW_AT_byte_size (8)
DW_AT_type (0xb6 "char *")

DW_TAG_pointer_type [0xb6]
DW_AT_byte_size (8)
DW_AT_type (0xbb "char")

DW_TAG_base_type [0xbb]
DW_AT_byte_size (0x01)
DW_AT_encoding (DW_ATE_signed_char)
DW_AT_name ("char")

298

DWARF: Variables

DW_TAG_variable [0xa3]
DW_AT_name ("x")
DW_AT_decl_file ("/path/to/main.c")
DW_AT_decl_line (2)
DW_AT_decl_column (0x2e)
DW_AT_type (0x4a "int")
DW_AT_location (0x3b:

[0x08, 0x0c): DW_OP_breg3 RBX+0, DW_OP_lit1, DW_OP_shl, DW_OP_stack_value
[0x0c, 0x0d): DW_OP_entry_value(DW_OP_reg5 RDI), DW_OP_lit1, \

DW_OP_shl, DW_OP_stack_value)

DW_TAG_formal_parameter [0x7f]
DW_AT_name ("argc")
// ...

299

DWARF: Expressions

I Very general way to describe location of value: bytecode

I Stack machine, evaluates to location or value of variable
I Simple case: register or stack slot
I But: complex expression to recover original value after optimization

e.g., able to recover i from stored i − 1
I Unbounded complexity!

I Can contain control flow
I Can dereference memory, registers, etc.

I Used for: CFI locations, variable locations, array sizes, . . .

300

DWARF: Program Structure

I Follows structure of code

I Top-level: compilation unit
I Entries for namespaces, subroutines (functions)

I Functions can contain inlined subroutines
I Lexical blocks to group variables
I Call sites and parameters

I Each node annotated with pc-range and source location

301

Debugging: Wanted Features

I Get back trace CFI
I Map address to source file/line Line Table

I Show global and local variables DIE tree
I Local variables need scope information, e.g. shadowing
I Data type information, e.g. int, string, struct, enum

I Set break point at line/function Line Table/DIE tree
I Might require multiple actual breakpoints: inlining, template expansion

I Step through program by line/statement Line Table

302

Other Debuginfo Formats

I DWARF is big despite compression
I Cannot run in time-constrained environments

I Unsuited for in-kernel backtrace generation

I Historically: STABS – string based encoding
I Complexity increased significantly over time

I Microsoft: PDB for PE

I Linux kernel: CTF for simple type information
I Linux kernel: BTF for BPF programs

303

Unwinding and Debuginfo – Summary

I Some languages/setups must be able to unwind the stack
I Needs meta-information on call frames
I DWARF encodes call frame information is bytecode program
I Runtime must efficiently find relevant information
I Stack unwinding typically done in two phases
I Functions have associated personality function to steer unwinding
I DWARF encodes debug info in tree structure of DIEs
I DWARF info can become arbitrarily complex

304

Unwinding and Debuginfo – Questions

I What are alternatives to stack unwinding?
I What are the benefits of stack unwinding through metadata?
I What are the two phases of unwinding? Why is this separated?
I How to construct a CFI table for a given assembly code?
I How to construct DWARF ops for a CFI table?
I How to find the correct CFI table line for a given address?
I What is the general structure of DWARF debug info?

	Unwinding and Debuginfo

