
339

Code Generation for Data Processing
Lecture 11: Binary Translation

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2022/23



340

Motivation

I Run program on other architecture

I Use-case: application compatibility
I Other architecture with incompatible instruction encoding
I Applications using unavailable ISA extensions50

I Use-case: architecture research
I Development of new ISA extensions without existing hardware

50Exception-based implementation possible, but slow.



341

ISA Emulation

I Simplest approach: interpreting machine code
I Simulate individual instructions, don’t generate new code

I Frequently used approach before JIT-compilation became popular

+ Simple, works almost anywhere, high correctness
− Very inefficient



342

Binary Translation

I Idea: translate guest machine code to host machine code
I Replace interpretation overhead with translation overhead

I Difficult: very rigid semantics, but few code constraints imposed
I Self-modifying code, overlapping instructions, indirect jumps
I Exceptions with well-defined states, status flags

mov rax, rcx
add rax, 4
mov [rdx+rsi+16], rax

Guest: x86-64
add x0, x1, 4

add x16, x6, 16
str x0, [x2, x16]

Host: AArch64

Warning for same-ISA translation: passing all instructions through as-is is a bad idea! Behavior might differ.



343

Static vs. Dynamic Binary Translation

Static BT
I Translate guest executable into

host executable
I Do translation before execution

Dynamic BT

I Translate code on-the-fly
during program execution

I Host code just lives in memory

+ Low runtime overhead
− Binaries tend to be huge
− Cannot handle all cases

I E.g., JIT-compiled code

+ Allows for high correctness
∼ Can use JIT optimizations
− Translation overhead at run-time



344

Static Binary Translation

I Goal: create new binary for host with same functionality

I Program may access its own code/data in various ways
I Guest binary must be retained as-is in-place

I Indirect jumps problematic
I Need prediction of all possible targets
I Keeping lots of dynamically possible entries prohibits optimizations

I JIT-compiled/self-modifying code impossible to handle

I Purely static translation impossible for the general case



345

Dynamic Binary Translation

Translator Process

Need
translation?

Guest
Code

Decode & Lift

IR

Optionally:

Modify IR

Code Gen.
Code Cache

yes

read code

store code

no

I Iteratively translate code
chunks on-demand
I Typically basic blocks

I Store new code in-memory
for execution and later re-use

I Code executed in same
address space as original
I Guest code/data must be

accessible



346

Dynamic Binary Translation: Code Fragment

RISC-V Code

400560: slli a0, a0, 2
400564: jalr x0, ra, 0 // ret

Translation Engine
void emulate(uintptr_t pc) {
uint64_t* regs = init();
while (true)
pc = translate(pc)(regs);

}

Semantical representation
uintptr_t trans_400560(uint64_t* regs) {
regs[10] = regs[10] << 2;
return regs[1];

}

// or with tail call:
_Noreturn void trans_400560(uint64_t* regs) {
regs[10] = regs[10] << 2;
translate(regs[1])(regs);
// unreachable

}



347

Guest State

I Guest CPU state must be completely emulated
I Registers: general-purpose, floating-point, vector, . . .
I Flags, control registers, system registers, segments, TLS base

I Memory – user-space emulation: use host address space
+ no overhead through additional indirection
− no isolation between emulator and guest

I Memory – system emulation: need software/hardware paging support
I Software implementation: considerable performance overhead
I Hardware implementation: guest and host need same page size



348

Guest Interface

I User-space emulation: OS interface needs to be emulated
I Mainly system calls, but also vDSO, memory maps, . . .
I Host libraries are hard to use: ABI differences (e.g. struct padding)
I Syscall emulation tedious: different flag numbers, arguments, orders

structs have different fields, alignments, padding bytes

I System-level emulation: CPU interface for operating systems
I Many system/control registers
I Different execution modes, memory configurations, etc.
I Emulation of hardware components



349

Dynamic Binary Translation: Optimizations

I Fully correct emulation of CPU (and OS) is slow
I Every memory access is a potential page fault
I Signals can be delivered at any instruction boundary
I many other traps. . .

I But: these “special” features are used extremely rarely

I Idea: optimize for common case
I Aggressively trade correctness for performance



350

Translation Granularity

I Larger translation granules allow for more optimization
I E.g., omit status flag computation; fold immediate construction

I Instruction: great for debugging
I Basic block: allows for some important opt.

I Easy to detect (up to next branch), easy to translate (no control flow)
I Superblock: up to next unconditional jump

I Reduces transfers between blocks in fallthrough case
I Translated code not necessarily executed

I Function: follow all conditional control flow
I Allows most optimizations, e.g. for loop induction variables
I Complex codegen, ind. jumps problematic, lot of code never executed



351

Chaining

I Observation: many basic blocks have constant successors
I Often conditional branches with fallthrough and constant offset

I (Hash)map lookup and indirect jump after everyblock expensive

I Idea: after successor is translated, patch end to jump directly to that code
I First execution is expensive, later executions are fast

// Initially generated code
// ...
mov rdi, 0x40068c
lea rsi, [rip+1f]
jmp translate_and_dispatch

1:.byte ... // store patch information

// After patching
// ...
jmp trans_40068c
// (garbage remains)



352

Chaining: Limitations

I First execution still slow, patching adds overhead
I Can speculatively translate continuations
I Translation of possibly unneeded code adds overhead

I Does not work for indirect jumps
I Not necessarily predictable, esp. when considering a single basic block
I Occur fairly often: function returns

I Removing translated functions from code cache becomes harder
I Arbitrary other code may directly branch to translated chunk
I Often solved by limiting chaining to same page or memory region



353

Return Address Prediction

I Observation: function calls very often return ordinarily
I Return is an indirect jump, but highly predictable
I But: even for “normal” code, this is not always the case:

setjmp/longjmp, exceptions

I Hardware has return address stack keeping track of call stack
I call pushes next address to stack, ret predicted to pop
I Usually implemented as 16/32 entry ring buffer

I Idea: similarly optimize for common case of ordinary return



354

Return Address Prediction in DBT

I Option 1: keep separate shadow stack of guest/host target pairs
I Can be implemented as ring buffer, too
I Pop from stack needs verification of actual guest return address
− Doesn’t use host hardware return address prediction

I Option 2: use host stack as shadow stack
I Allows using host call/ret instructions
I Verification before/after return still required
− Can degenerate, need to bound shadow stack

(guest might repeatedly call, discard return address, but never return)



355

Status Flags

I Observation: many status flags are rarely used
I But: eager computation can be expensive

I E.g., x86 parity (PF) or auxiliary carry (AF)

I Idea: compute flags only when needed
I On flag computation, store operands needed for flag computation
I Flag usage in same block allows for optimizations

I E.g., use idiomatic branches (jle, ...)
I Flag usage in different block: compute flags from operands

I More expensive, but happens seldomly



356

Correct Binary Translation

I Goal 1: precise emulation – application works properly
I Goal 2: stealthness/isolation – application can’t compromise DBT

I Problem: CPU and OS have huge and very-well-specified interfaces
I . . . and even if unspecified, software often depends on it

I Increased difficulty: different guest/host architectures
I E.g., different page size or memory semantics

I Increased difficulty for user-space: different guest/host OS
I Depending on syscall interface, nearly impossible (see WSL1)



357

POSIX Signals

I POSIX specifies signals, which can interrupt program at any point
I Kernel pushes signal frame to stack with user context and calls signal handler
I Signal handler can read/modify user context and continue execution

I Synchronous signals: e.g., SIGSEGV, SIGBUS, SIGFPE, SIGILL
I For example, due to page fault or FP exception
I Delivered in response to “error” in current thread

I Asynchronous signals: e.g., SIGINT, SIGTERM, SIGCHILD
I Delivered externally, e.g. using kill
I Can be delivered to any thread at any time
I (usually a bad idea to use them)



358

Correct DBT: Signals

I DBT must register signal handler and propagate signals

I Synchronous signals
I Delivered at “constrainable” points in program
I Must recover fully consistent guest architectural state
I JIT-compiled code must be sufficiently annotated for this

I Asynchronous signals
I Can really be delivered at any time
I Must not be immediately delivered to guest
 Usually delivered when convenient
I But: real-time signals have special semantics



359

Correct DBT: Memory Accesses

I Option: emulating paging in software (slow, but works)
I Every memory accesses becomes a hash table lookup
I Shared memory still problematic: host OS might have larger pages

I Using host paging is much faster, but problematic for correctness

I Host OS might have larger pages
I Every memory access can cause a page fault (see signal handling)
I Guest can access/modify arbitrary addresses in its address space...

including the DBT and its code cache
I Tracking read/write/execute permissions, e.g. check X before translation



360

Correct DBT: Memory Ordering

I CPUs (aggressively) reorder memory operations
I x86: total store ordering – stores can be reordered after loads
I Most others: weak ordering – everything can be reordered

I Relevant for multi-core systems: other thread can observe ordering
I Atomic operations and fences limit reordering (e.g., acq/rel/seqcst)

I Emulating weak memory on TSO: easy
I Emulating TSO on weak memory: hard

I Can try to make all operations atomic
I Atomic operations often need alignment guarantees (not on x86)
I Only viable solution so far: insert fences everywhere



361

Correct DBT: Self-modifying Code

I Writable code regions (or with MAP_SHARED) can change at any time

I Idea: before translation, remap as read-only
I On page fault (SIGSEGV), remove relevant parts from code cache

I Requires code cache segmentation and mapping of code to original page

I When executing possibly modifiable code: every store can change code!

I Doesn’t easily work for shared memory, need to track this, too
I Might be impossible when shared with other process



362

Correct DBT: Floating-point

I Floating-point arithmetic is standardized in IEE-754
I ...except for some details and non-standard operations

I x86 maxsd: if one operand is NaN, result is second operand
I RISC-V fmax.d: if one operand is NaN, result is non-NaN operand
I AArch64 fmax: if one operand is NaN, result is NaN operand

I Unless configured differently in fpcr

I Correctness typically requires software emulation (e.g., QEMU does this)



363

Correct DBT: OS and CPU Specifics

I Emulating all syscalls correctly is hard
I Version-specifics, structure layouts, feature support
I Huge interface

I /proc/self/* – how to emulate?
I Catch all file system accesses? Follow all possible symlinks?
I What if procfs is mounted somewhere else?

I cpuid – how to emulate?
I Cache sizes, processor model, . . .
I Application can do timing experiment to detect DBT



364

Binary Translation – Summary

I ISA emulation often used for cross-ISA program execution
I Binary Translation allows for more performance than interpretation
I Static Binary Translation handles whole program ahead-of-time
I Dynamic Binary Translation translates code on-demand
I ISA often highly restricts optimization possibilities
I Optimizations typically very low-level
I Correct emulation of CPU/OS challenging due to large interface



365

Binary Translation – Questions

I What are use cases of binary translation?
I What is the difference between static and dynamic binary translation?
I Why is static BT strictly less powerful than dynamic BT?
I What are typical translation granularities for DBT?
I How to optimize control flow handling in DBT?
I Why is correct binary translation hard to optimize?
I What problem can occur when not emulating paging for user-space

emulation?


	Binary Translation
	Overview
	Binary Translation
	Guest State
	Fast DBT
	Correct DBT


