Code Generation for Data Processing

Lecture 6: Instruction Selection

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2022/23

168

Code Generation — Overview

169

Code Generation — Overview

» Instruction Selection

> Map IR to assembly
» Keep code shape and storage; change operations

169

Code Generation — Overview

» Instruction Selection

> Map IR to assembly
» Keep code shape and storage; change operations

» Instruction Scheduling

» Optimize order to hide latencies
> Keep operations, may increases demand for registers

169

Code Generation — Overview

» Instruction Selection

> Map IR to assembly
» Keep code shape and storage; change operations

» Instruction Scheduling

» Optimize order to hide latencies
> Keep operations, may increases demand for registers

» Register Allocation

» Map virtual to architectural registers and stack
» Adds operations (spilling), changes storage

169

Instruction Selection (ISel) — Overview

» Find machine instructions to implement abstract IR

» Typically separated from scheduling and register allocation

» Input: IR code with abstract instructions
» Output: lower-level IR code with target machine instructions

i64 %10 = add %8, %9
i8 %11 = trunc %10
i64 %12 = const 24
i64 %13 = add %7, %12
store %11, %13

i64 %10 = ADD %8, %9
STRB %10, [%7+24]

170

|Sel — Typical Constraints

171

ISel — Typical Constraints

» Target offers multiple ways to implement operations

» imul x, 2, add x, x, shl x, 1, lea x, [x+x]

171

ISel — Typical Constraints

» Target offers multiple ways to implement operations
» imul x, 2, add x, x, shl x, 1, lea x, [x+x]
» Target operations have more complex semantics

» E.g., combine truncation and offset computation into store
» Can have multiple outputs, e.g. value+flags, quotient+remainder

171

ISel — Typical Constraints

» Target offers multiple ways to implement operations
» imul x, 2, add x, x, shl x, 1, lea x, [x+x]
» Target operations have more complex semantics

» E.g., combine truncation and offset computation into store
» Can have multiple outputs, e.g. value+flags, quotient+remainder

» Target has multiple register sets, e.g. GP and FP/SIMD

» Important to consider even before register allocation

171

ISel — Typical Constraints

» Target offers multiple ways to implement operations
» imul x, 2, add x, x, shl x, 1, lea x, [x+x]
» Target operations have more complex semantics

» E.g., combine truncation and offset computation into store
» Can have multiple outputs, e.g. value+flags, quotient+remainder

» Target has multiple register sets, e.g. GP and FP/SIMD
» Important to consider even before register allocation
» Target requires specific instruction sequences

» E.g., for macro fusion
» Often represented as pseudo-instructions until assembly writing

171

Optimal 1Sel

» Find most performant instruction sequence with same semantics (?)

» |.e., there no program with better “performance” exists
» Performance = instructions associated with specific costs

20DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. @.

172

http://llvm.org/pubs/2008-CGO-DagISel.pdf

Optimal 1Sel

» Find most performant instruction sequence with same semantics (?)

» |.e., there no program with better “performance” exists
» Performance = instructions associated with specific costs

» Problem: optimal code generation is undecidable

20DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. (@.

172

http://llvm.org/pubs/2008-CGO-DagISel.pdf

Optimal 1Sel

» Find most performant instruction sequence with same semantics (?)

» |.e., there no program with better “performance” exists
» Performance = instructions associated with specific costs

» Problem: optimal code generation is undecidable
» Alternative: optimal tiling of IR with machine code instrs

» IR as dataflow graph, instr. tiles to optimally cover graph
> NP-complete?®

20DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. (@.

172

http://llvm.org/pubs/2008-CGO-DagISel.pdf

Avoiding |Sel Altogether

173

Avoiding 1Sel Altogether

Use an interpreter

+ Fast “compilation time”, easy to implement

— Slow execution time

> Best if code is executed once

173

Macro Expansion

» Expand each IR operation with corresponding machine instrs

%5a = movz 12345

Y5 = add %1, 12345 —
#5 = add % %5 = add %1, %5a

%6 =and %2, 7 — %6 =and %2, 7
%7a =1s1 %5, %6
%7 = shl %5, %6 — ATb = cmp %6, 64

%7 = csel %7a, xzr, %7b, lo

174

Macro Expansion

» Oldest approach, historically also does register allocation
» Also possible by walking AST

175

Macro Expansion

» Oldest approach, historically also does register allocation
» Also possible by walking AST

+ Very fast, linear time, simple to implement, easy to port

— Inefficient and large output code

175

Macro Expansion

+

Oldest approach, historically also does register allocation
» Also possible by walking AST

Very fast, linear time, simple to implement, easy to port

Inefficient and large output code

Used by, e.g., LLVM FastlSel, Go, GCC

175

Peephole Optimization

» Plain macro expansion leads to suboptimal results
21

» Idea: replace inefficient instruction sequences
» Originally: physical window over assembly code

» Replace with more efficient instructions having same effects
» Possibly with allocated registers

» Extension: do expansion before register allocation??
» Expand IR into Register Transfer Lists (RTL) with temporary registers

» While combining, ensure that each RTL can be implemented as single instr.

21WM McKeeman. “Peephole optimization”. In: CACM 8.7 (1965), pp. 443-444. (@.
22 JW Davidson and CW Fraser. “Code selection through object code optimization”. In: TOPLAS 6.4 (1984), pp. 505-526. @.

176

https://dl.acm.org/doi/pdf/10.1145/364995.365000
https://dl.acm.org/doi/pdf/10.1145/1780.1783

Peephole Optimization

» Originally covered only adjacent instructions
» Can also use logical window of data dependencies
» Problem: instructions with multiple uses

» Needs more sophisticated matching schemes for data deps.
= Tree-pattern matching

177

Peephole Optimization

+

Originally covered only adjacent instructions
Can also use logical window of data dependencies
» Problem: instructions with multiple uses

» Needs more sophisticated matching schemes for data deps.
= Tree-pattern matching

Fast, also allows for target-specific sequences

Pattern set grows large, limited potential

177

Peephole Optimization

» Originally covered only adjacent instructions
» Can also use logical window of data dependencies
» Problem: instructions with multiple uses

» Needs more sophisticated matching schemes for data deps.
= Tree-pattern matching

+ Fast, also allows for target-specific sequences

— Pattern set grows large, limited potential

» Widely used today at different points during compilation

177

ISel as Graph Covering — High-level Intuition

» Idea: represent program as data flow graph

178

ISel as Graph Covering — High-level Intuition

» Idea: represent program as data flow graph

» Tree: expression, comb. of single-use SSA instructions
» DAG: data flow in basic block, e.g. SSA block
» Graph: data flow of entire function, e.g. SSA function

(local ISel)
(local ISel)
(global 1Sel)

178

ISel as Graph Covering — High-level Intuition

» Idea: represent program as data flow graph

» Tree: expression, comb. of single-use SSA instructions (local ISel)
» DAG: data flow in basic block, e.g. SSA block (local ISel)
» Graph: data flow of entire function, e.g. SSA function (global 1Sel)

» ISA “defines’ pattern set of trees/DAGs/graphs for instrs.
» Cover data flow tree/DAG/graph with least-cost combination of patterns
» Patterns in data flow graph may overlap

178

Tree Covering: Converting SSA into Trees

» SSA form:
%4 = shl %1, 4
%5 = add %2, %4
%6 = add %3, %4
YA load %5

live-out: %6, %7

179

Tree Covering: Converting SSA into Trees

» SSA form:
%4 shl %1, 4
%5 add %2, %4
%6 = add %3, %4
YA load %5

live-out: %6, %7

» Data flow graph:

()
ONNG

@@ 9@

179

Tree Covering: Converting SSA into Trees

» SSA form: » Method 1:
%4 = shl %1, 4 Ed Splitti
%5 = add %2, %4 g¢ JpItting
%6 = add %3, %4
%7 = load %5 e

live-out: %6, %7

» Data flow graph:)
" @ W
OO

o
5®)
®

@@ @®

Tree Covering: Converting SSA into Trees

» SSA form: » Method 1: » Method 2:
;é : zgi ;; 24 Edge Splitting Node Duplication
%6 = add %3, %4 (<) c
W = YA
Iize—out:o;;, %57 @ e e
» Data flow graph: (=) @ @)
i) @ ® @
@e e@ 2 96@
<] (*)
W @ () () W) @

Tree Covering: Patterns

Pattern Cost Instruction
Py GPr1 — <(GPR2, Kl) 1 1sl R, R, #K;
Py GPr1 — +(GPR2, GPR3) 1 add R, R», R3
P> GPr1 — +(GPR2, <<(GPR3, Kl) 2 add Ry, R», Rz, 1sl #Kj
Ps GPRl — +(<<(GPR2, Kl), GPRQ) 2 add Ri, R3, Ry, 1sl #Kj
P, GPgr1 — 1d(GPR2) 2 ldr Ry, [R»]
P5 GPRl — 1d(+(GPR2, GPR3)) 2 1dr Rl s [Rz, R3]
Pe GPgr1 — 1d(+(GPR2, <(GPR3, Kl)) 3 ldr Ry, [Ry, Rz, 1s1 #Kil
Pz GPR]_ — 1d(+(<<(GPR2, Kl), GPR3) 3 1ldr Ry, [R3, Ry, 1sl #Ki]
Pg GPgr1 — *(GPR2, GPR3) 3 madd Ri, R, Rz, xzr
Py GPr1 — +(*(GPR2, GPR3), GPR4) 3 madd Ry, R, R3, Ra

1 mov Ry, Ki

P1o GPRl — Kl

180

Tree Covering: Greedy/Maximal Munch

» Top-down always take largest pattern
» Repeat for sub-trees, until everything is covered

+ Easy to implement, fast

181

Tree Covering: Greedy/Maximal Munch

» Top-down always take largest pattern
» Repeat for sub-trees, until everything is covered

+ Easy to implement, fast

Result might be non-optimum

181

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:

» +: P; — cost 1 — covered nodes: 1

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:
» +: P; — cost 1 — covered nodes: 1

» +: P, — cost 2 — covered nodes: 3

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:
» +: P; — cost 1 — covered nodes: 1
» +: P, — cost 2 — covered nodes: 3
» +: Py — cost 3 — covered nodes: 2

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:
» +: P; — cost 1 — covered nodes: 1
» +: P, — cost 2 — covered nodes: 3 — best
» +: Py — cost 3 — covered nodes: 2

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:

>

>
»
>

+: P; — cost 1 — covered nodes:

+: P, — cost 2 — covered nodes

+: Py — cost 3 — covered nodes:
*: Pg — cost 3 — covered nodes:

: 3 — best

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:

>

>
»
>

+: P; — cost 1 — covered nodes:

+: P, — cost 2 — covered nodes

+: Py — cost 3 — covered nodes:

*: Pg — cost 3 — covered nodes

1

: 3 — best
2

- 1 — best

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:

» +: P; — cost 1 — covered nodes:

» +: P, — cost 2 — covered nodes

» x: Pg — cost 3 — covered nodes

Total cost: 5

» +: Py — cost 3 — covered nodes:

1

: 3 — best
2

- 1 — best

182

Tree Covering: Greedy/Maximal Munch — Example

Matching Patterns:
» +: P; —cost 1 — covered nodes: 1
» +: P, — cost 2 — covered nodes: 3 — best
» +: Py — cost 3 — covered nodes: 2

» *: Pg — cost 3 — covered nodes: 1 — best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, 1lsl #2

182

Tree Covering: with LR-Parsing?

» Can we use (LR-)parsing for instruction selection?

23RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231-254. @.

183

https://dl.acm.org/doi/pdf/10.1145/512760.512785

Tree Covering: with LR-Parsing

» Can we use (LR-)parsing for instruction selection? Yes!?3
> Pattern set = grammar; IR (in prefix notation) = input

23RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231-254. @.

183

https://dl.acm.org/doi/pdf/10.1145/512760.512785

Tree Covering: with LR-Parsing

» Can we use (LR-)parsing for instruction selection? Yes!?3
> Pattern set = grammar; IR (in prefix notation) = input

» Possible in linear time
» Can be formally verified

» Implementation can be
generated automatically

23RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231-254. @.

183

https://dl.acm.org/doi/pdf/10.1145/512760.512785

Tree Covering: with LR-Parsing

» Can we use (LR-)parsing for instruction selection? Yes!?3
> Pattern set = grammar; IR (in prefix notation) = input

» Possible in linear time » Constraints must map to non-terminals
» Constant ranges, reg types, . ..

» CISC: handle all operand combinations
» Large grammar (impractical)
» Refactoring into non-terminals

» Ambiguity hard to handle optimally

» Can be formally verified

» Implementation can be
generated automatically

23RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231-254. @.

183

https://dl.acm.org/doi/pdf/10.1145/512760.512785

Tree Covering: Dynamic Programming®*

» Step 1: compute cost matrix, bottom-up for all nodes

» Matrix: tree node x non-terminal

(different patterns might yield different non-terminals)
» Cost is sum of pattern and sum of children costs
> Always store cheapest rule and cost

» Step 2: walk tree top-down using rules in matrix
> Start with goal non-terminal, follow rules in matrix

» Time linear w.r.t. tree size

24 AV Aho, M Ganapathi, and SWK Tjiang. “Code generation using tree matching and dynamic programming”. In: TOPLAS 11.4
(1989), pp. 491-516. @.

184

https://dl.acm.org/doi/pdf/10.1145/69558.75700

Tree Covering: Dynamic Programming — Example

Node: 2
Pattern:

Pat. Cost:
Cost Sum:

Node + *x « 2

GP Cost 00 00 00 0
Pattern

185

Tree Covering: Dynamic Programming — Example

Node: 2
Pattern: Pio: GP — K;
Pat. Cost: 1
Cost Sum: 1

Node + x « 2
GP Cost oo oo oo 1
Pattern P1o

185

Tree Covering: Dynamic Programming — Example

Node: <
Pattern:

Pat. Cost:
Cost Sum:

Node + x « 2

GP Cost oo oo oo 1
Pattern P1o

185

Tree Covering: Dynamic Programming — Example

Node: <
Pattern: P;: GP — «(GP, GP)
Pat. Cost: 1
Cost Sum: 2

Node + x « 2

GP Cost o oo 2 1
Pattern P? PlO

185

Tree Covering: Dynamic Programming — Example

Node: <
Pattern: Pi: GP — «(GP, K;)
Pat. Cost: 1
Cost Sum: 2

Node + x « 2

GP Cost oo oo 1 1
Pattern P]_ P]_o

185

Tree Covering: Dynamic Programming — Example

Node: *
Pattern:

Pat. Cost:
Cost Sum:

Node + x « 2
GP Cost oo oo 1 1
Pattern P]_ P]_o

185

Tree Covering: Dynamic Programming — Example

Node: *
Pattern: Pg: GP — *(GP, GP)
Pat. Cost: 3
Cost Sum: 3

Node + * « 2

GP Cost oo 3 1 1
Pattern Pg P]_ P10

185

Tree Covering: Dynamic Programming — Example

Node: +
Pattern:

Pat. Cost:
Cost Sum:

Node + * « 2

GP Cost oo 3 1 1
Pattern Pg P]_ P10

185

Tree Covering: Dynamic Programming — Example

Node: +
Pattern: P;: GP — +(GP, GP)
Pat. Cost: 1
Cost Sum: 5

Node + * « 2

GP Cost 5 3 1 1
Pattern P]_ Pg P]_ P]_Q

185

Tree Covering: Dynamic Programming — Example

Node: +
Pattern: P,: GP — +(GP, «(GP, Ki)
Pat. Cost: 2
Cost Sum: 5

Node + * « 2

GP Cost 5 3 1 1
Pattern P, Py P Py

185

Tree Covering: Dynamic Programming — Example

Node: +
Pattern: Py: GP — +(x(GP, GP), GP)
Pat. Cost: 3
Cost Sum: 4

Node + * « 2

GP Cost 4 3 1 1
Pattern Pg Pg P]_ P]_Q

185

Tree Covering: Dynamic Programming — Off-line Analysis

» Cost analysis can actually be precomputed®®

» |dea: annotate each node with a state based on child states

» Lookup node label from precomputed table (one per non-terminal)

» Significantly improves compilation time
» But: Tables can be large, need to cover all possible (sub-)trees

» Variation: dynamically compute and cache state tables®®

25A Balachandran, DM Dhamdhere, and S Biswas. “Efficient retargetable code generation using bottom-up tree pattern matching”.
In: Computer Languages 15.3 (1990), pp. 127-140.

26\A Ertl, K Casey, and D Gregg. “Fast and flexible instruction selection with on-demand tree-parsing automata”. In: PLD/ 41.6
(2006), pp. 52-60.

186

Tree Covering

187

Tree Covering

+ Efficient: linear time to find local optimum
-+ Better code than pure macro expansion

+ Applicable to many ISAs

187

Tree Covering

+ Efficient: linear time to find local optimum
-+ Better code than pure macro expansion

+ Applicable to many ISAs

— Common sub-expressions cannot be represented

» Need either edge split (prevents using complex instructions)
or node duplication (redundant computation = inefficient code)

— Cannot make use of multi-output instructions (e.g., divmod)

187

DAG Covering

» |dea: lift restriction of trees, operate on data flow DAG
» Reminder: an SSA basic block already forms a DAG

» Trivial approach: split into trees <

27DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. @.

188

http://llvm.org/pubs/2008-CGO-DagISel.pdf

DAG Covering

» |dea: lift restriction of trees, operate on data flow DAG
» Reminder: an SSA basic block already forms a DAG

» Trivial approach: split into trees <

» Least-cost covering is N'P-complete?”

27DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. @.

188

http://llvm.org/pubs/2008-CGO-DagISel.pdf

DAG Covering: Adapting Dynamic Programming 1%

» Step 1: compute cost matrix, bottom-up for all nodes
» As before; make sure to visit each node once
» Step 2: iterate over DAG top-down

> Respect that multiple roots exist: start from all roots
» Mark visited node/non-terminal combinations: avoid redundant emit

28\A Ertl. “Optimal code selection in DAGs". In: POPL. 1999, pp. 242-249. (@.

189

https://dl.acm.org/doi/pdf/10.1145/292540.292562

DAG Covering: Adapting Dynamic Programming 1%

» Step 1: compute cost matrix, bottom-up for all nodes
» As before; make sure to visit each node once
» Step 2: iterate over DAG top-down

> Respect that multiple roots exist: start from all roots
» Mark visited node/non-terminal combinations: avoid redundant emit

+ Linear time

— Generally not optimal, only for specific grammars

28\A Ertl. “Optimal code selection in DAGs". In: POPL. 1999, pp. 242-249. (@.

189

https://dl.acm.org/doi/pdf/10.1145/292540.292562

DAG Covering: Adapting Dynamic Programming | — Example

Node: *
Pattern:

Pat. Cost:
Cost Sum:

Node +y *

GP Cost 00 00 0
Pattern

190

DAG Covering: Adapting Dynamic Programming | — Example

Node: *
Pattern: Pg: GP — *(GP, GP)
Pat. Cost: 3
Cost Sum: 3

Node +y *

GP Cost oo oo 3
Pattern Ps

190

DAG Covering: Adapting Dynamic Programming | — Example

Node: +1
Pattern:

Pat. Cost:
Cost Sum:

Node +y *

GP Cost oo oo 3
Pattern Ps

DAG Covering: Adapting Dynamic Programming | — Example

Node: +1
Pattern: Pi: GP — +(GP, GP)
Pat. Cost: 1
Cost Sum: 4

Node +, +; %

GP Cost o 4 3
Pattern P Psg

190

DAG Covering: Adapting Dynamic Programming | — Example

Node: +1
Pattern: Py: GP — +(x(GP, GP), GP)
Pat. Cost: 3
Cost Sum: 3

Node +, +; %

GP Cost o~ 3 3
Pattern Py Psg

190

DAG Covering: Adapting Dynamic Programming | — Example

Node: +5
Pattern:

Pat. Cost:
Cost Sum:

Node +, +; %

GP Cost o~ 3 3
Pattern Py Psg

DAG Covering: Adapting Dynamic Programming | — Example

Node: +5
Pattern: Pi: GP — +(GP, GP)
Pat. Cost: 1
Cost Sum: 4

Node +, +;

GP Cost 4 3 3
Pattern Pi. Py Pg

190

DAG Covering: Adapting Dynamic Programming | — Example

Node: +5
Pattern: Py: GP — +(x(GP, GP), GP)
Pat. Cost: 3
Cost Sum: 3

Node +, +;

GP Cost 3 3 3
Pattern Py Py Ps

190

Total cost: 6

madd %1, %b, %c, %a
madd %2, %b, %c, %d

DAG Covering: Adapting Dynamic Programming | — Example

Node +, +;

GP Cost 3 3
Pattern Py P

190

DAG Covering: Adapting Dynamic Programming 1%°

» Step 1: compute cost matrix, bottom-up (as before)

» Step 2: iterate over DAG top-down (as before)

» Step 3: identify overlaps and check whether split is beneficial
» Mark nodes which should not be duplicated as fixed

» Step 4: as step 1, but skip patterns that include fixed nodes
» Step 5: as step 2

29DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. @.

191

http://llvm.org/pubs/2008-CGO-DagISel.pdf

DAG Covering: Adapting Dynamic Programming 11%°

» Step 1: compute cost matrix, bottom-up (as before)

» Step 2: iterate over DAG top-down (as before)

» Step 3: identify overlaps and check whether split is beneficial
» Mark nodes which should not be duplicated as fixed

» Step 4: as step 1, but skip patterns that include fixed nodes
» Step 5: as step 2

+ Probably fast? “Near-optimal’™?

— Generally not optimal, superlinear time

29DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. (@.

191

http://llvm.org/pubs/2008-CGO-DagISel.pdf

DAG Covering: ILP3°

» |dea: model ISel as integer linear programming (ILP) problem
» P is set of patterns with cost and edges, V' are DAG nodes
» Variables: M, , is 1 iff a pattern p is rooted at v

minimize Y p.cost-M,,

subject to Vr € roots. > M,, >
Vp,v,e € p.edges(v). M,, — Zp, My <
M,, €

39DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. (@.

1

0
{0,1}

192

http://llvm.org/pubs/2008-CGO-DagISel.pdf

DAG Covering: ILP3°

» |dea: model ISel as integer linear programming (ILP) problem
» P is set of patterns with cost and edges, V' are DAG nodes
» Variables: M, , is 1 iff a pattern p is rooted at v

minimize Y p.cost-M,,

subject to Vr € roots. > M,, >
Vp,v,e € p.edges(v). M,, — Zp, My <
M,, €

+ Optimal result
— Practicability beyond small programs questionable (at best)

39DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs". In: CGO. 2008, pp. 45-54. (@.

0
{0,1}

192

http://llvm.org/pubs/2008-CGO-DagISel.pdf

DAG Covering: Greedy/Maximal Munch

» Top-down, start at roots, always take largest pattern

» Repeat for remaining roots until whole graph is covered

193

DAG Covering: Greedy/Maximal Munch

» Top-down, start at roots, always take largest pattern

» Repeat for remaining roots until whole graph is covered

+ Easy to implement, reasonably fast

Result often non-optimal

193

DAG Covering: Greedy/Maximal Munch

+

>

Top-down, start at roots, always take largest pattern

Repeat for remaining roots until whole graph is covered

Easy to implement, reasonably fast
Result often non-optimal

Used by: LLVM SelectionDAG

193

Graph Covering

» Idea: lift limitation of DAGs, cover entire function graphs

» Better handling of predication and VLIW bundling
» E.g., hoisting instructions from a conditional block

» Allows to handle instructions that expand to multiple blocks
» switch, select, etc.

194

Graph Covering

» Idea: lift limitation of DAGs, cover entire function graphs

» Better handling of predication and VLIW bundling
» E.g., hoisting instructions from a conditional block

» Allows to handle instructions that expand to multiple blocks
» switch, select, etc.

» May need new IR to model control flow in addition to data flow

194

Graph Covering

>

Idea: lift limitation of DAGs, cover entire function graphs
Better handling of predication and VLIW bundling
» E.g., hoisting instructions from a conditional block
Allows to handle instructions that expand to multiple blocks
» switch, select, etc.

May need new IR to model control flow in addition to data flow

In practice: only used by adapting methods showed for DAGs
Used by: Java HotSpot Server, LLVM GloballSel (all tree-covering)

194

Flawed Assumptions

195

Flawed Assumptions

» Cost model is fundamentally flawed
= "Optimal” ISel doesn’t really mean anything

195

Flawed Assumptions

» Cost model is fundamentally flawed
= "Optimal” I1Sel doesn’t really mean anything

» Qut-of-order execution: costs are not linear

» |Instructions executed in parallel, might execute for free
» Possible contention of functional units

» Register allocator will modify instructions
» “Bad"” instructions boundaries increase register requirements
» More stack spilling ~~» much slower code!

195

LLVM Back-end: Overview

196

LLVM Back-end: Overview

» LLVM-IR — Machine IR: instruction selection + scheduling

» MIR is SSA-representation of target instructions

> Selectors: SelectionDAG, FastlISel, GloballSel

> Also selects register bank (GP/FP/...) — required for instruction
» Annotates registers: calling convention, encoding restrictions, etc.

196

LLVM Back-end: Overview

» LLVM-IR — Machine IR: instruction selection + scheduling

» MIR is SSA-representation of target instructions

> Selectors: SelectionDAG, FastlISel, GloballSel

> Also selects register bank (GP/FP/...) — required for instruction
» Annotates registers: calling convention, encoding restrictions, etc.

» MIR: minor (peephole) optimizations
» MIR: register allocation
» MIR: prolog/epilog insertion (stack frame, callee-saved regs, etc.)

196

LLVM Back-end: Overview

» LLVM-IR — Machine IR: instruction selection + scheduling

» MIR is SSA-representation of target instructions
> Selectors: SelectionDAG, FastlISel, GloballSel
> Also selects register bank (GP/FP/...) — required for instruction

» Annotates registers: calling convention, encoding restrictions, etc.

MIR: minor (peephole) optimizations
MIR: register allocation

MIR: prolog/epilog insertion (stack frame, callee-saved regs, etc.)

vvyyvyy

MIR — MC: translation to machine code

196

LLVM MIR Example

define 164 @fn(i64 %a,i64 %b,i64 Y%c) {
%shl = shl i64 Y%c, 2
Ymul = mul i64 %a, %b
%add = add i64 %mul, %shl
ret i64 %add
}

YAML with name, registers, frame info

body: |

bb.0 (%ir-block.0):
liveins: $x0, $x1, $x2

%2:gpr64 =
%1:gpré4
%0:gpré4
%3:gpré4
%4 :gpré4 =
$x0 = COPY

COPY $x2

COPY $x1

COPY $x0

MADDXrrr %0, %1, $xzr
ADDXrs killed %3, %2, 2
%4

RET_ReallyLR implicit $x0

1llc -march=aarch64 -stop-after=finalize-isel

197

LLVM: Instruction Selectors

198

LLVVM: Instruction Selectors

FastiSel
» Uses macro expansion
» Low compile-time

» Code quality poor

» Only common cases

» Otherwise: fallback
to SelectionDAG

» Default for -00

LLVVM: Instruction Selectors

FastlSel

>
>
>

Uses macro expansion
Low compile-time

Code quality poor

Only common cases

Otherwise: fallback
to SelectionDAG

Default for -00

SelectionDAG

>

Converts each block
into separate DAGs

Greedy tree matching
Slow, but good code

Handles all cases

No cross-block opt.
(done in DAG building)

Default

198

LLVVM: Instruction Selectors

FastlSel

>
>
>

Uses macro expansion
Low compile-time

Code quality poor

Only common cases

Otherwise: fallback
to SelectionDAG

Default for -00

SelectionDAG

>

Converts each block
into separate DAGs

Greedy tree matching
Slow, but good code

Handles all cases

No cross-block opt.
(done in DAG building)

Default

GloballSel

» Conv. to generic-MIR
then legalize to MIR

» Reuses SD patterns
» Faster than SelDAG

» Few architectures

» Handles many cases,
SelDAG-fallback

198

LLVM SelectionDAG: IR to ISelDAG

(EntryToken) (Register %0 (Register %1 (Register %2
[o

| |
L;h)%iMJLiMJLiMJ

G

:‘ 0 ‘ 1 T 0 ‘ 1\\\ ‘n ‘ 1 W
» Construct DAG for basic block N .)
> EntryToken as ordering chain

CopyToReg
u2

ch | glue

AArch641SD:RET_FLAG
3
ch
i

isel input for fn:

199

LLVM SelectionDAG: IR to 1SelDAG (Bt (o

0 (Register %1 (Register %2

[o

s

s |

|
) Uis)

7

L ;h)% i) (e
’." r; ‘ |\ 0 ‘ 1\\\ ‘n ‘ 1 W
» Construct DAG for basic block i : e

> EntryToken as ordering chain
» Legalize data types

> Integers: promote or expand into multiple
» Vectors: widen or split (or scalarize)

CopyToReg

2

AArch641SD:RET_FLAG
3
ch
i

isel input for fn:

199

LLVM SelectionDAG: IR to ISelDAG

» Construct DAG for basic block
> EntryToken as ordering chain

» Legalize data types
> Integers: promote or expand into multiple

» Vectors: widen or split (or scalarize)

» Legalize operations
> E.g., conditional move, etc.

(EntryToken) (Register %0 (Register %1 (Register %2
I o o O
(e)% ot) (e) (e)
LA o

i L S. N
o [1 o [1 - -
Constant<2>

o [1
- Cony =

Register $x0

CopyToReg
2

ch | glue

AArch641SD:RET_FLAG
3

ch

—

isel input for fn:
199

LLVM SelectionDAG: IR to ISelDAG

((EntryToken) (Register %0
tl

0 (Register %1 (Register %2
[o

To 1 s |
"“(')“I\O“l\‘n“l (m
» Construct DAG for basic block o o
> EntryToken as ordering chain
>

Legalize data types

> Integers: promote or expand into multiple
» Vectors: widen or split (or scalarize)

» Legalize operations
> E.g., conditional move, etc.
» Optimize DAG, e.g. some pattern S
matching,
removing unneeded sign/zero extensions D R TG
1llc -march=aarch64 -view-isel-dags T

1
Note: needs LLVM debug build

isel input for fn:

199

LLVM SelectionDAG: 1SelDAG to DAG G

‘n
oy w) e

!Ii

Ve \ ST
n \ ~<
S \ E\
S \
\ 0 1
o (Register %2) (Register Sxar
1 N —
'

» Mainly pattern matching : R #
» Simple patterns specified in TableGen I anED “
) . . . : 5
» Matching/selection compiled into N CEE
bytecode ! TN

P SelectionDAGISel: :SelectCodeCommon ()

10

/ i64
g

» Complex selections done in C++

» Scheduling: linearization of graph

RET_ReallyLR

1llc -march=aarch64 -view-sched-dags -
Note: needs LLVM debug build T

scheduler input for fn

Instruction Selection — Summary

» Instruction Selection: transform generic into arch-specific instructions
» Often focus on optimizing tiling costs

» Target instructions often more complex, e.g., multi-result

Macro Expansion: simple, fast, but inefficient code

Peephole optimization on sequences/trees to optimize

Tree Covering: allows for better tiling of instructions

DAG Covering: support for multi-res instrs., but NP-complete

vvyyVvyVvYyy

Graph Covering: mightiest, but also most complex, rarely used

201

Instruction Selection — Questions

vVvyvVvyVvyVvyYVYyYvVvyy

What is the (nowadays typical) input and output IR for 1Sel?

Why is good instruction selection important for performance?

Why is peephole optimization beneficial for nearly all 1Sel approaches?

How can peephole opt. be done more effectively than on neighboring instrs.?
What are options to transform an SSA-IR into data flow trees?

Why is a greedy strategy not optimal for tree pattern matching?

When is DAG covering beneficial over tree covering?

Which [Sel strategies does LLVM implement? Why?

202

	Instruction Selection
	Overview
	Macro Expansion
	Tree Covering
	DAG Covering
	Graph Covering
	LLVM Instruction Selection

