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ABSTRACT
The problem of generating a cost-minimal edit script be-
tween two trees has many important applications. How-
ever, finding such a cost-minimal script is computationally
hard, thus the only methods that scale are approximate ones.
Various approximate solutions have been proposed recently.
However, most of them still show quadratic or worse runtime
complexity in the tree size and thus do not scale well ei-
ther. The only solutions with log-linear runtime complexity
use simple matching algorithms that only find corresponding
subtrees as long as these subtrees are equal. Consequently,
such solutions are not robust at all, since small changes in
the leaves which occur frequently can make all subtrees that
contain the changed leaves unequal and thus prevent the
matching of large portions of the trees. This problem could
be avoided by searching for similar instead of equal subtrees
but current similarity approaches are too costly and thus
also show quadratic complexity. Hence, currently no robust
log-linear method exists.

We propose the random walks similarity (RWS) measure
which can be used to find similar subtrees rapidly. We use
this measure to build the RWS-Diff algorithm that is able
to compute an approximately cost-minimal edit script in
log-linear time while having the robustness of a similarity-
based approach. Our evaluation reveals that random walk
similarity indeed increases edit script quality and robustness
drastically while still maintaining a runtime comparable to
simple matching approaches.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing
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Figure 1: Slightly different trees that make top-
down and bottom-up matching fail

1. INTRODUCTION
When tree data changes or versions of a data item are inde-
pendently modified, it is necessary to compute the difference
to reconcile or display the changes. The changes are often
expressed as a so-called edit script : a compact sequence of
operations that transforms one tree into the other. Comput-
ing edit scripts has many important applications. Consider,
for example, revision control systems that deal with trees
like XML data warehousing [1], source code revision control
[7], or HTML warehousing [8]. The goal in these applica-
tions is to compute a compact and intuitive representation
of the history. Computing compact tree diffs is also crucial
for various other applications, for example, data synchro-
nization [19], genomic and proteomic data [32, 15], RNA
secondary structures [38], or image analysis [6].

Our goal is to compute compact edit scripts for very large
trees, for example, two file systems with tens or hundreds
of thousands of nodes. Furthermore, operations that lead to
short and intuitive edit scripts are to be supported. In par-
ticular, not only edits on individual nodes (e.g., deletion of
a node), but on whole subtrees should be considered (e.g.,
moving of a subtree). As an example, consider a diff for
synchronizing a remote file system. A locally moved subdi-
rectory requires sending all files one-by-one to be inserted
into the remote file system if moves are not detected. Our
approach should work for both ordered and unordered trees
to be generally applicable. An example of ordered trees are
HTML documents, were the order of the paragraphs mat-
ters; file systems are unordered trees.

Ideally, a tree difference algorithm computes a minimal
edit script. Unfortunately, for unordered trees, the problem
is MAX-SNP hard [37] even for a limited set of node oper-
ations; for ordered trees, exact solutions require O(n3) time
in the number of nodes and thus do not scale either. Our ap-
proach is to approximate the minimal edit script. The result
is a small (albeit not necessarily minimal) edit script that is
correct, i.e., it turns the first input tree into the second.



Most previous attempts to approximate the minimal edit
script run in O(n2) and consequently do not scale to large
trees. The few solutions that run in O(n logn) use compa-
rably simple matching algorithms which start either at the
root (top-down) or at the leaves (bottom-up). The match-
ing is continued as long as identical nodes or subtrees are
found. These approaches rely on large subtrees that can be
matched exactly and fail otherwise, as illustrated in Figure 1:
Top-down cannot match any node since the root labels dif-
fer. Bottom-up subtree matching can only match single leaf
nodes (I, C, K), although many inner nodes are unchanged.
The changes in the leaves alter the containing subtrees and
prevent them from matching. Changes in the leaf nodes are
a frequent scenario, for example, files in a file system and
text values in XML.

Our solution is RWS-Diff (Random Walk Similarity Diff),
a novel robust algorithm for tree differences. RWS-Diff sup-
ports both node and subtree edits. It is robust because it
does not rely on exact subtree matching, but is also able to
match similar subtrees. Similarity computations are costly
and the challenge is to find similar subtrees efficiently. We
present a new technique which represents each subtree by a
d-dimensional feature vector using random walks. This al-
lows us to use well-established indexes for similarity search
in d-dimensional space to find similar subtrees.

RWS-Diff is the first algorithm that runs efficiently in
O(n logn) and deals well (due to subtree similarity match-
ing) with all kinds of node edits for which top-down and
bottom-up based approaches with the same asymptotic run-
time fail. RWS-Diff does not rely on any application specific
assumptions (like node identifiers) that simplify the match-
ing. It is configurable to work on both ordered and un-
ordered trees and supports a large set of edit operations.
Our evaluation using synthetic and real-world data shows
substantial gains in the matching quality (up to ten times
smaller edit scripts on average compared to other quasi-
linear methods) and robustness (more than 200 times smaller
edit scripts for certain real-world trees) and confirms the
scalability of RWS-Diff.

2. TREE EDIT SCRIPTS
For a pair of input trees A and B, a tree difference algorithm
(diff) computes a sequence of edit operations (called edit
script) that transforms A into B. Tree diffs vary in the kinds
of supported operations and the underlying tree definition.

Tree Definition. Our diff algorithm works on all rooted,
labeled trees with a (non-strict) order defined on the labels
(i.e., the labels can be sorted and compared for equality)
and a hash function that maps labels to numeric values. Our
algorithm can be configured for both ordered trees (where
the sibling order matters) and unordered trees. The sibling
order is not related to the label order.

The labels carry application specific data. XML nodes,
for example, may be labeled with element tags or text con-
tent, but also more complex labels are possible. Our flexible
tree definition suites a wide range of applications such as
HTML documents, XML, file systems, or RNA secondary
structures, and sets us apart from many other works with
restricted input trees.

Edit Operations. We allow edit operations on both nodes
and subtrees. Let a and a′ be two nodes in tree A; the
following edit operations are allowed in an edit script:

• rename(a, l) Change the label of node a to l.

• insertLeaf(l, a, i) Insert a new leaf node with label l as
a new child of node a before the i-th child of a.

• deleteLeaf(a) Remove leaf node a.

• insertSubtree(S, a, i) Insert a new subtree S before the
i-th child of node a.

• deleteSubtree(a) Remove the subtree rooted in node a,
that is, a and all its descendants.

• move(a, a′, i) Remove the subtree rooted in a and in-
sert it before the i-th child of a′.

• copy(a, a′, i) Insert a copy of the subtree rooted in a
before the i-th child of a′.

The child position i is omitted in the case of unordered
trees. The root node is extended with a dummy parent
node to allow all edit operations also on the root node. Sub-
tree edit operations lead to more compact and intuitive edit
scripts that can be applied fast. For example, moving a
chapter of a document is faster and more expressive than
deleting all sections and paragraphs and reinserting them at
the target position individually. Node insertion and deletion
are defined on leaf nodes; am inner node is deleted by first
moving all its children (with their subtrees) to its parent.

Our tree difference algorithm is flexible as it can be con-
figured to work with either the ordered or the unordered
version of the edit operations. Furthermore, the operations
for copying, inserting, and deleting subtrees can be switched
off, in which case they are expressed by other operations.

A cost is assigned to each edit operation and the edit
script is the better the lower the accumulated costs of the
contained operations are. RWS-Diff does not imply a spe-
cific cost model. The only restriction is that the cost of each
operation must be less than the cost of a sequence of other
operations that can emulate it, because otherwise the op-
eration would be useless. For example, deleting a subtree
using deleteSubtree must be cheaper than deleting the same
subtree node by node using deleteLeaf. The cost for subtree
insertion should be a function of the subtree size, as it must
encode the whole subtree S to be inserted; otherwise the
best edit script would always consist of deleting tree A and
inserting tree B if the trees are large enough.

Edit Mapping. An edit mapping maps nodes between
two trees and is used to express the difference between the
trees; intuitively, two nodes are mapped if they correspond
to each other. We produce an edit mapping in the first step
and infer the edit script from the mapping in a second step.

We define the edit mapping M between a tree A that
should be transformed into tree B to be a function from
the nodes of B to the nodes of A. The mapping function is
partial and neither injective nor surjective, that is, not all
nodes of B or A need to be mapped and a node of A can be
the image of multiple nodes of B.

3. RELATED WORK
Edit scripts have been discussed from two points of view.
Works on the edit distance compute the similarity between
trees, where two trees are considered similar if a short edit
script can transform one tree into the other. Tree diff algo-
rithms are interested in the edit script itself.

3.1 Tree Edit Distance Computation
The tree edit distance is defined as the minimal cost of an
edit script that transforms one tree into the other. The clas-



sical algorithm by Zhang and Shasha [38] for ordered trees
only allows the node edit operations discussed in Section 2.
For these operations, the exact distance for two trees T1 and
T2 is computed in O(n1n2 min(d1, l1) min(d2, l2)) time and
O(n1n2) space, where n1 (n2) is the number of nodes, l1 (l2)
is the number of leaf nodes, and d1 (d2) the depth of T1 (T2).
Thus, for trees with O(n) leaves and depth O(n), the run-
time complexity is O(n4). Klein et al. [16] and Dulucq et al.
[12] improve the runtime to O(n3 logn). Demaine et al. [11]
present an algorithm that runs in O(n3) time and show that
this is the best worst case complexity that can be achieved.
Unfortunately, the worst case is a frequent scenario in this
algorithm, rendering it slower than the classical algorithm by
Zhang and Shasha for many practical scenarios. Recently,
the RTED [26] algorithm solved this problem; it maintains
the optimal worst case complexity and runs as fast or faster
than any of the previously proposed algorithms. For each of
these algorithms the minimal edit script for the edit distance
can be computed within the same complexity bound [38].

Overall, computing the minimal edit script requires O(n3)
time and Θ(n2) space for ordered trees, even when only
node edit operations are allowed. An extension of Zhang
and Shasha’s algorithm with deleteSubtree and insertSubtree
runs in O(n4) time [4]. With the move operation that we
allow in our approximation, the edit distance problem is
NP-complete even for the case of flat strings [30].

Approximations of the tree edit distance, which run more
efficiently, have been proposed. Guha et al. [14] propose
an upper bound for the tree edit distance by computing
the string edit distance between the preorder (or postorder)
sequences of the tree node labels in O(n2) time. An edit
script can be computed using this method.

With p,q-grams [3] Augsten et al. propose a concept of
“q-grams for trees”. The grams are constructed using the
ancestor relationship (configurable by p) and the sibling re-
lationship (q). The method decomposes the input trees into
small, besom-shaped subtrees with depth p and q leaves.
Each of these small subtrees is then serialized to a string
and hashed. A list of these hashes represents the data in
the tree and its hierarchical relationships. The algorithm
calculates the p,q-grams in O(n) time and space. Our ap-
proach also makes use of p,q-grams for finding similar sub-
trees but adds a dimensional reduction step to speed up
similarity search. Similar to p,q-grams, the binary branch
technique [36] splits trees into small subtrees, but binary
branches keep less structure information than p,q-grams [3].
Neither p,q-grams nor binary branches compute edit scripts.

For unordered trees, finding the exact tree edit distance is
MAX SNP-hard [37] since the matching algorithm can not
rely on the sibling order. Zhang et al. [31] propose an ex-
act, enumeration-based algorithm for unordered trees which
runs in O(n316n) and a heuristic solution based on searching
in the enumeration space which runs in O(n2). By sorting
siblings lexicographically by label the concept of p,q-grams
can be adapted to unordered trees. The p,q-gram approx-
imation runs efficiently in O(n logn) and is shown to work
well in practice [2]. We use this technique for supporting
random walk similarity on unordered trees.

3.2 Computing Diffs between Trees
Numerous approaches for computing approximately cost-
minimal edit scripts have been proposed, but most of them
either suffer from a prohibitive runtime of at least O(n2),

are restricted to very specific types of data, or do not show
a robust behaviour.

Chawathe et al. propose LaDiff [10], which imposes re-
strictions on the hierarchical order between labels: An ex-
ample are LATEX documents, where a subsection is always
within a section. This bottom-up algorithm uses a heuristic
optimized for text. As a bottom-up tree edit distance, it
is sensitive to changes in the leaf nodes. LaDiff combined
with another method [7] is implemented in the tree-diff tool
DiffXML [22]. Le et al. [17] remove the hierarchical order
restriction from LaDiff. The family of algorithms based on
LaDiff runs in O(ne) time, where e is the size of the edit
script. In the worst case, when the trees are very different,
the runtime is O(n2) and the approach does not scale. In
our experiments we compare to DiffXML as a representative
of these algorithms.

In [18, 19] a three-way merging algorithm for XML is
described, which includes an algorithm for calculating diffs
between XML documents (3DM). It works in a bottom-up
fashion, mapping trees using their content. It also uses the
neighborhood of tree nodes to produce mappings, for exam-
ple, when the left and right siblings of a node are mapped, a
mapping for the node in between is inferred. The algorithm
has worst-case complexity O(n2) and runs in O(n logn) if
the changes between trees are small.

The MH-DIFF algorithm [9] allows the operations insert,
rename, delete, move, and copy. Here, insert and delete
work on single inner or leaf nodes. In the first step, all
possible mappings between the nodes of two trees are con-
sidered and mappings that can only increase the cost are
pruned in the second step. The problem is then solved as
a bipartite weighted matching problem by assigning an ap-
proximate cost to each mapping between a pair of node. The
overall runtime complexity is O(n2 logn).

Wang et al. [34] only allow insertLeaf and removeLeaf.
Furthermore, only nodes with the same path to the root
are mapped. The algorithm produces large edit scripts if
these assumptions are not met. When the maximum num-
ber of children of all nodes is assumed to be a constant (i.e.,
independent of the tree size), O(n2) runtime complexity is
achieved. [32] improves the average runtime of this algo-
rithm for hierarchical biological data without altering the
worst case complexity.

The KF-Diff+ algorithm [35] is specific to a particular
kind of XML documents, in which each node has a key that
is unique between all siblings. In this case, a diff which
allows move operations only between nodes with the same
parent can be computed in O(n) time.

The only algorithm without strong assumptions that runs
in less than quadratic time is XyDiff [21]. XyDiff uses tree
hashes that are invariant to the sibling order [34] to effi-
ciently find and map moved subtrees. In the next step, nodes
in the vicinity of mapped subtrees are mapped. The overall
algorithm runs in O(n logn) and produces good results if
large unchanged subtrees are present. In addition to the op-
erations supported by XyDiff, our algorithm also supports
subtree deletion. Subtree deletion is useful to remove surplus
data from one of the trees, for example, the citation elements
present in some DBLP entries that otherwise dominate the
edit distance. We experimentally compare our algorithm to
XyDiff and show that (even without subtree deletion) our
algorithm produces significantly smaller edit scripts with a
similar runtime.



4. THE RWS-DIFF ALGORITHM
A good edit mapping is one that maps as many nodes as
possible and maps nodes which are very similar to each
other. The better the mapping, the smaller the generated
edit script will be. A perfect mapping would be one that
produces a cost-minimal edit script. However, such a map-
ping is extremely hard to compute (MAX SNP-hard for un-
ordered trees even if only node operations are allowed, cf.
Section 3). Thus, RWS-Diff is an approximate method which
tries to find a good - but not always perfect - mapping. How-
ever, our focus is on finding a better mapping than previous
approximate approaches by using an elaborated similarity
measure to find non-obvious mappings.

This section introduces RWS-Diff which constructs the
approximate cost-minimal edit mapping and then creates an
edit script from it. Our method can roughly be separated
into five steps:

1. A simple matching step which tries to find obvious
common structures in both versions of the tree. The
nodes mapped in this step do not have to be considered
in subsequent matching steps and thus significantly im-
prove their speed.

2. Construction of feature vectors for unmapped subtrees
of both trees, i.e., small fixed-length vectors which are
similar if subtrees are similar. The squared euclidean
distance between the vectors constitutes our random
walk similarity measure.

3. Creation of appropriate index structures for nearest
neighbors queries among the feature vectors.

4. Mapping of previously unmapped subtrees by looking
up possible candidates using nearest neighbors queries.

5. Generation of the edit script from the edit mapping.

4.1 Finding Simple Mappings
In the first step, we try to match large parts of the trees
rapidly. The goal is not to find all possible mappings but to
find only the obvious ones which are easy to compute. We
use methods and concepts already described in the literature
and successfully applied. These are top-down matching [29,
35] and matching using subtree hashes [21].

Top-down Matching. The top-down matching starts at
the roots of the trees to be compared and maps nodes with
the same label to each other. If a node is mapped and is
not a leaf node, the same matching method is recursively
applied to its children. If more than one sibling has the
same label, we do not map it in this step, since we might
map the wrong pairs of nodes. When using this method, if
a node’s label is changed, the whole subtree rooted in this
node is not mapped anymore.

Hash Matching. Hash matching between trees A and B
is performed bottom up by calculating a hash value of each
unmapped subtree in A and inserting it into a hash table.
Then, the unmapped subtrees of B are hashed as well and
the hash table is probed to find equivalent subtrees in A.
For unordered trees, we have to use a position-independent
hash function. Simply adding the hash of the node label
and the hash values of all children multiplied with a prime
number is position-independent since addition is a commu-
tative operator (cf., Figure 2). For ordered trees it suffices
to multiply the hash of each child with a prime number that
is different for each child position.

A

B D E

F G hg=h(G)

hd=h(D)

hf=h(F)

he=17(hf+hg)+h(E)

ha=17(hb+hd+he)+h(A)

hb=h(B)

Figure 2: Sibling order invariant subtree hashes

4.2 Random Walk Similarity Matching
Using hash matching and top-down matching, we can usu-
ally map a large portion of the tree nodes if there is a
moderate number of differences (which is usually the case).
The top-down matching finds all paths from the root that
have not changed. The hash matching finds smaller subtrees
which have not changed. However, the quality of the result-
ing mapping is usually not sufficient because these simple
matching methods are not robust at all. For example, re-
naming the root totally disables top-down matching and a
single renaming in a node or insertion of a node disables
hash matching for all subtrees that contain this node. Since
even such “trivial”, non-structural edit operations disable
the simple matching methods, we need a method for finding
trees that are similar but not equal.

Our core contribution finds trees that are not necessarily
equal but similar and thus are missed by the simple match-
ing approaches. The idea is to represent each subtree by a
d-dimensional feature vector (with fixed d) that constitutes
a random walk in d-dimensional space. The random walks
are generated in a way that ensures that their squared eu-
clidean distance, which we call random walk distance (RWD)
is approximately proportional to the edit distance of the cor-
responding trees. How these random walks are generated in
detail will be discussed in Section 5.

We find similar subtrees in trees A and B by generating
all feature vectors for subtrees in A and inserting these vec-
tors into an index structure for d-dimensional nearest neigh-
bors queries. If the copy operation is allowed, we insert all
subtrees, because even already mapped subtrees could be
mapped again for a copy. Otherwise, we only insert subtrees
with an unmapped root. Then, we generate feature vectors
for all unmapped subtrees in B. Next, we iterate over tree
B in preorder and for each unmapped subtree b, we use its
feature vector to probe into the index structure to find the
` (with fixed `) nearest neighbors which are candidates for
being similar. We retrieve ` > 1 neighbors, because a low
RWD does not always (but often) imply a similarity in the
subtrees (i.e., false positives are possible). Therefore, the
` nearest neighbors in the feature vector space are merely
used as mapping candidates and we use the one with the
least edit distance or none if all are false positives (which
should happen very infrequently due to the stochastic prop-
erties of the RWD). For the similarity comparison of the
` mapping candidates, we use an iterative deepending top-
down matching that stops after a fixed number of compared
nodes and is thus in O(1). Although the premature stopping
might reduce approximation quality, it is important to meet
the desired log-linear runtime bounds. If the copy operation
is not allowed we skip candidates which have an already
mapped root. Once the best candidate subtree a for subtree
b is determined, we map the roots of a and b and perform
an ordinary top-down matching starting from a and b to
map cheaply as many descendants as possible. Afterwards,
we continue the preorder iteration over B to map remaining
subtrees.



We can use standard index structures to efficiently find
nearest neighbors in d-dimensional space. We focus on promi-
nent indexing schemes which are k-d trees, k-means locality-
sensitive hashing (KLSH), and hierarchical k-means (HKM).
These methods have been shown to be useful in practice
[20, 24, 25]. However, note that any scheme for finding
nearest neighbors in d-dimensional space can be used. The
k-d tree is an established multidimensional index structure
which repeatedly separates the space by hyperplanes. The
exact nearest neighbors algorithm on the k-d tree is quite
costly, so we use the approximate best bin first (BBF) [5] al-
gorithm. Hierarchical k-means clustering has been success-
fully used to cluster high dimensional data [24]. It works
by recursively finding k centroids for the data point clusters
and then arranging those clusters into a tree structure. K-
means locality-sensitive hashing [25] uses k-means clustering
to convert space coordinates into locality-sensitive hashes.

4.3 Edit Script Generation
An edit script is a sequence of edit operations that trans-
forms tree A into tree B. Algorithm 1 produces the edit
script from an edit mapping (which maps nodes of B to
nodes of A). Figure 3 shows an example for each kind of
edit operation produced by the algorithm. The algorithm
traverses all nodes of B in preorder, that is, parents are
visited before their children. If a node b in B has no map-
ping (b, a) in M , b is inserted (Lines 2-3, node H in fig.). If
a mapping (b, a) exists, we check whether we already have
visited a node b′ which maps to a as well. The node b′ is
already visited if its preorder rank pre(b′) is smaller than the
one of b (Lines 4-6). If such a node exists, we already have
“used” subtree a and must thus copy it (Line 7, right node
E in fig.); otherwise, we check if the parents of the mapped
nodes differ. If they do, we move node a to its new parent
(Lines 8-9, left node E in fig.). In addition to updating the
node position, we must also rename node a if the labels of
the mapped nodes differ (Lines 10-11, node B → C in fig.).
After the preorder iteration over B, we perform a postorder
iteration over A and delete all nodes that are not mapped
(Lines 12-14, node I in fig.).

Algorithm 1 generateEditScript(A,B,M)

1: for all nodes b of B in preorder do
2: if @a.(b, a) ∈M then
3: Emit insertLeaf(label(b),M(parent(b)), pos(b))
4: else
5: a←M(b)
6: if ∃b′.(b′, a) ∈M ∧ pre(b′) < pre(b) then
7: Emit copy(a,M(parent(b)), pos(b))
8: else if M(parent(b)) 6= parent(a) then
9: Emit move(a,M(parent(b)), pos(b))

10: if label(b) 6= label(a) then
11: Emit rename(a, label(b))

12: for all nodes a of A in postorder do
13: if @b.(b, a) ∈M then
14: Emit deleteLeaf(a)

Whenever an edit operation is emitted, it is applied to
tree A and subsequent edit operations are defined on the
new version of A. In addition, the mapping M is updated
after each insertLeaf and copy operation with mappings to
the newly added node(s). After executing Algorithm 1, the
sibling order is adjusted for ordered trees, which is separately
discussed below.

A

B D E

F G
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C

E

D

F G

H

deleteLeaf
insertLeaf

move

renameI

E

F G

copy

Figure 3: Edit mapping with implied edit operations

Line 8 of the algorithm requires that M maps the parent
of the current node b to some node of A. This is guaran-
teed by traversing B in preorder and updating the mapping
after each insert operation. In the second phase of the al-
gorithm (Lines 12-14), unmapped nodes in A are removed
using the deleteLeaf operation, which requires the nodes to
be leaves at the time of being removed. This holds since (a)
the mapped child a of an unmapped node in A satisfies the
condition in Line 8, that is, the subtree rooted in a is moved
to a mapped parent in the first phase of the algorithm; (b)
the nodes of A are traversed in postorder, thus unmapped
children are removed before their unmapped parents.

Algorithm 1 does not produce subtree insertions and dele-
tions. By generating the insertLeaf and deleteLeaf opera-
tions in preorder and postorder, respectively, we ensure that
all inserts and deletes that belong to the same subtree are
adjacent in the edit script. We merge sequences of leaf in-
sertions and deletions into subtree insertions and deletions
in a simple postprocessing step. By omitting this step, we
can switch off subtree insertion and deletion. If subtree copy
is switched off, the mapping is injective, so the condition in
Line 6 is never true.

After executing Algorithm 1, A is identical to B except
for the sibling order, and all nodes of A and B are mapped.
We use the approach of XyDiff [21] to fix the sibling order.
The c children of each node in A are numbered with the
sibling positions of the respective (mapped) nodes in B, that
is, each child in A gets assigned a position between 1 and
c. We compute the longest increasing sub-sequence X of
the position numbers in O(c log c) time [13]; all nodes that
are not in X are moved to the right position by emitting
moveSubtree operations.

4.4 Complexity of RWS-Diff
RWS-Diff must have an O(n logn) worst case runtime com-
plexity in order to yield a scalable solution. The simple
matching methods that are also applied in existingO(n logn)
methods obviously fall into this bound. The generation of
the random walk feature vectors for all subtrees in a tree is in
O(n) (cf. next Section). Since there may be O(n) subtrees in
both trees that must be mapped by the RWS, mapping one
subtree may only cost O(logn). A nearest neighbors lookup
is usually in O(logn) in the index structures. We adjust
the index structures to yield even worst case O(logn) be-
haviour by simply decreasing the approximation quality in
pathological cases. For example, HKM has its height limited
to O(logn) and if there are more than ` candidates in the
final Voronoi cell, only the ` first are considered. Although
the approximation becomes worse in some cases, our evalu-
ation shows that the overall quality is still good. For finding
the best candidate between the ` candidates, we use the
constantly bounded iterative deepening top-down matching
which is in O(1), so a single RWS mapping stays in O(logn).
An insertion or lookup in the mapping M is in O(1) since
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Figure 4: Partial construction of p,q-grams

dense integers can be assigned to each node in tree B and
M can be implemented as an array indexed by these inte-
gers. Finally, the edit script generation loops only twice over
both trees and is thus in O(n), so we meet the desired overall
complexity bound of O(n logn).

5. RANDOM WALK SIMILARITY
To find similar subtrees rapidly, we reduce the information
content of each subtree to a fixed-size d-dimensional fea-
ture vector and use indexed d-dimensional nearest neighbors
queries. To obtain the feature vector, we first serialize each
subtree into a bag of p,q-gram hashes. The more similar two
trees are, the more hashes are equal. Each of the hashes be-
comes a step in a d-dimensional random walk and the final
feature vector is the endpoint of the walk. Consequently, the
more similar two trees are, the more steps in their random
walks are equal and thus the distance of the random walk
end points is the smaller the more similar two trees are. We
prove certain stochastic properties of the proposed random
walk to show that it is indeed a valid approximate similarity
measure.

5.1 Grams for Trees
Grams (also shingles or tokens) are tree summaries that rep-
resent a tree by a set of small excerpts. Using such grams,
the problem of finding similar subtrees is reduced to the
problem of finding bags of grams with large intersections.
This approach has been widely applied to strings before and
has shown to be useful also for trees.

We use p,q-grams, which are besom-shaped subtrees con-
sisting of q leaf nodes (called base) and a chain of p non-leaf
nodes (called stem). In the original tree, the base nodes are
siblings and the stem nodes their p closest ancestors. p,q-
grams capture both ancestor and sibling relationships and
can be made invariant to small order changes. In addition,
they have already been successfully applied to tree similarity
computations in various scenarios [3, 2].

The p,q-grams for all subtrees of a tree of size n can be
generated in O(n) time. The p,q-gram construction is illus-
trated in Figure 4 for an example tree (p = q = 2). In the
first step, the tree is sorted lexicographically by labels (the
sort order of identical labels is irrelevant for the p,q-gram
construction). Next, for each node a in the tree, a window
of size w ≥ q is slided over the children of the node and
p,q-grams are produced. The bases are formed by the first
node of each window and any sub-sequences of the remain-
ing nodes in the window. If a node does not have enough
ancestors or enough children, dummy nodes (labeled with
an asterisk in the figure) are used to produce the p,q-grams.

In Figure 4, the sorting changes the order of the children of
the node with label “A”. The window size is w = 3 and six
bases are formed for three window positions (the window is
wrapped around at the right border).

Invariance to order changes is obtained through sorting
siblings. Augsten et al. show in [2] that this way the per-
mutation of a constant amount of siblings changes only a
constant amount of p,q-grams. The construction of the base
using a window makes the p,q-grams robust to modifications
that change the sort order of children, called “children er-
ror” in [2], while still capturing sibling relationships. The
“stem” captures ancestor relationships in the p,q-grams. If
sibling permutations should not be allowed (ordered trees),
the trees are not sorted and windows of size q are used.

The p,q-grams are finally serialized into arrays of size p+q,
which is straightforward due to the fixed shape of the p,q-
grams. The bottom of Figure 4 shows the serializations of
the respective p,q-grams.

The similarity of two trees can now be expressed over their
bags of p,q-grams. Let bA and bB be the bags of grams of
tree A and B, respectively, then the symmetric bag differ-
ence D(A,B) is defined as |SA ] SB | − 2|bA ∩ bB |. This
difference directly reflects the number of elements we have
to remove from A and add to B if we want to transform A
to B and as such approximately reflects the required edit
operations. It is a distance measure, that is, the distance
D(A,B) between identical sets is zero while the distance
between entirely different sets is |A|+ |B|.

5.2 Random Walk Distance
Even though the comparison of trees is now easier, the actual
size of the tree representations has gone up. If there are a
and b unmapped subtrees in tree A and B, respectively,
we have to compute a × b bag differences to find the best
matches. Each of these computations has linear runtime
in the bag sizes, which would clearly violate the O(n logn)
runtime bound. To speed up the similarity search, we do
not explicitly calculate the bag difference between any two
bags. Instead, we compress each bag of grams to a fixed-size
d-dimensional vector and then use a nearest neighbors search
in the d-dimensional space to find mapping candidates.

The d-dimensional feature vector for a tree A which has
a bag of grams bA is generated as follows: First, compute
a hash value hg for each p,q-gram g in the bag bA. Then,
use hg to generate a random point vg on the d-dimensional
unit sphere (e.g., use hg as seed for a random number gen-
erator that generates the vector components). To get the
final feature vector vA for A, add up all the vectors vg.
To approximate the symmetric bag difference, we use the
d-dimensional squared euclidean distance. The vector vA
constitutes the end point of an d-dimensional random walk
with |bA| steps of length one. Therefore, we call the resulting
distance random walk distance (RWD):

D(A,B) ≈ RWD(A,B) = ||vA − vB ||2 = vA · vB

By using the random walk distance, we reduce the problem
of finding similar subtrees to the problem of finding points
which are close in euclidean space. It is intuitive that this is
a valid similarity measure: The more grams differ between
the bags bA and bB , the more steps from which vA and vB
are assembled differ.

All grams that are in both bags bA and bB yield the exact
same steps in the random walk. Consequently, these steps



do not alter the distance at all. The number of remaining
grams is x = |bA \ bB | and y = |bB \ bA| which constitute the
two random walks whose squared euclidean distance is the
RWD. The distance between the end points of two random
walks with x and y steps is equal to the distance between
the origin and an end point of a random walk with z =
D(A,B) = x + y steps. Figure 5 shows the transformation
of two bags of grams bA and bB into corresponding two-
dimensional random walks vA and vB . The numbers below
the grams show their hash values. In this example, the trees
have 4 common grams and 2 + 4 = 6 different grams. Thus,
the expected euclidean distance is

√
6.

Of course, the RWD is only an approximation since ran-
dom walks with totally different steps might end up at points
that are close to each other. To argue that the measure
is useful indeed, we examine its stochastic properties: Let
v = v1 + . . .+ vz be the endpoint of a random walk starting
from the origin and taking z steps in d-dimensional space
and let RWDd

z be the squared euclidean distance between
the origin and v. For each step vi, we have E[vi] = ~0,
‖vi‖2 = 1 with all vi being independent random variables.
Then we have RWDd

z = ‖v‖2 = v · v. By expansion of the
dot product we obtain RWDd

z =
∑z

i=1(vi)
2 +

∑
k 6=` vk · v`.

With E[(vi)
2] = 1 and E[vk ·v`] = E[vk] ·E[v`] = 0 for every

k 6= `, we have

E[RWDd
z ] = z = D(A,B) (1)

Thus, the RWD is indeed an approximation of the symmet-
rical bag distance regardless of the number of dimensions.
The squared RWD is as follows:

(RWDd
z)2 = z2︸︷︷︸

a

+ 2z
∑
k 6=`

vk · v`︸ ︷︷ ︸
b

+ (
∑
k 6=`

vk · v`)2︸ ︷︷ ︸
c

and thus for the variance:

Var[RWDd
z ] = E[a]︸︷︷︸

=z2

+E[b]︸︷︷︸
=0

+E[c]− E[RWDd
z ]2︸ ︷︷ ︸

=z2

= E[c]

and for E[c]:

E[c] =
∑
k 6=`

∑
i6=j

E[(vk · v`)(vi · vj)]

All terms with {k, `} 6= {i, j} in this summation are zero.
The remaining 2z(z − 1) terms have a mean of m = E[(vi ·
vj)

2]. Let the `-th component of vector vi be v`i . Due to
independence of vi and vj and because vi and vj are equally
distributed, we can expand the dot product and simplify to
m =

∑d
`=1E[(v`i )

2]2. Since all d components v`i are identi-

cally distributed with ‖vi‖2 = 1, we have E[(vji )2] = 1
d

by

symmetry and thus m = 1
d
. Consequently

Var[RWDd
z ] = 2z(z − 1)m =

2z(z − 1)

d
(2)

The first consequence of Equation 2 is that the number of
dimensions reduces the variance and thus makes the approx-
imation more precise. For an infinite number of dimensions,
the RWD would even be exactly the symmetric bag differ-
ence. This implies that a high number of dimensions is
desirable. However, a high number of dimensions makes
computations more costly and renders the index structures
that we use for the nearest neighbors search ineffective due
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Figure 5: Transforming bags of grams into corre-
sponding two-dimensional random walks

to the curse of dimensionality. Hence, too many dimen-
sions are prohibitive as well. We obtained best results with
10 ≤ d ≤ 20. The second consequence of Equation 2 is that
the variance is proportional to z(z − 1). Thus, the larger
the distance, the less reliable the approximation is. In con-
trast, the RWD is a very reliable approximation for small
distances. This fact is extremely beneficial for our applica-
tion: As we want to execute a nearest neighbors search, we
are especially interested in points with a small distance. For
these points, the RWD is very precise, so there are no false
negatives. As mentioned, the problem of false positives is
mitigated by choosing the best of ` nearest neighbors. In
conclusion, the stochastic properties of the d-dimensional
random walk make the RWD an excellent approximate dis-
tance measure for our purposes. Note that while the RWD
is defined as the squared euclidean distance since this is a
direct approximation for the bag distance, the index struc-
tures use the usual euclidean distance. As we are not inter-
ested in the value of the RWD itself but only in the nearest
neighbors, this is not an issue.

5.3 Weighting Grams
Until now, we assumed that each step in the random walk
has a length of one. However, we can also weight the grams
and multiply the step length by that weight to give cer-
tain grams more or less significance. A general assumption
we can make is that having less frequent grams in common
is more significant than having frequent grams in common.
If we look, for example, at HTML documents, two subtrees
having a br element in common are not that rare, while hav-
ing a long text node in common which appears infrequently
in the document is a strong indication of a correct mapping.
Therefore, we use the inverse gram frequency, that is, the re-
ciprocal value of the number of times a gram occurs in both
trees as weight. Although this is a quite simple heuristic, it
improved the edit script quality noticeably in our tests. Of
course, more elaborate heuristics could be used as for exam-
ple proposed in [28]. What we want to emphasize here is not
the concrete choice of heuristic, but the fact that the random
walk similarity can be tuned easily by such a heuristic.

6. EVALUATION
Index Structure Comparison. In order to find out
which of the feature vector indexes presented in Section 4.2
is best suited we compare them with test data. We generate
that data by taking 10,000/100,000 random subtrees with
10 to 100 nodes from various freely available XML files [33].
For each subtree Si, we generate a feature vector fi with
d = 10 dimensions, modify the tree randomly, and calculate
another feature vector f ′

i . We then insert the feature vectors



Method Precision AVG dist Runtime Setup time

Linear scan 1 3.45 625 ms 0 ms
Exact k-d tree 1 3.45 1197 ms 8 ms
BBF k-d tree 0.46 3.85 54 ms 8 ms
KLSH 0.74 3.60 30 ms 131 ms
HKM 0.54 3.75 13 ms 261 ms

Table 1: Comparison of indexes with 10,000 points

Method Precision AVG dist Runtime Setup time

Linear scan 1 3.02 6454 ms 0 ms
Exact k-d tree 1 3.02 15041 ms 160 ms
BBF k-d tree 0.33 3.55 88 ms 160 ms
KLSH 0.76 3.15 470 ms 1988 ms
HKM 0.40 3.39 21 ms 3461 ms

Table 2: Comparison of indexes with 100,000 points

fi into an index. Afterwards, we issue l-nearest neighbors
queries with l = 10 for 1000 randomly chosen f ′

is. We mea-
sure precision, that is, the fraction of returned nodes which
are correct l-nearest neighbors, average distance to query
point, setup time (i.e., time for generating the index) and
runtime for the 1000 queries. All figures are averaged over
20 runs on identical hardware (Core i5 M460).

We assess exact approaches and approximate approaches.
The exact approaches are a linear scan (comparison to all
points) and a k-d tree with exact querying. The approximate
approaches are KLSH, HKM, and a k-d tree with best-bin-
first (BBF) querying.

Table 1 shows the result for 10,000 subtrees and Table 2
for 100,000 subtrees. Of course, the exact methods have a
precision of 1. They also show that the “perfect” average
distance, i.e., the distance of the real 10-nearest neighbors
is 3.44 & 3.02 (for 10,000 nodes & 100,000 nodes). The run-
time of the exact methods is prohibitively long even for a
small dataset consisting of only 10000 points. The approx-
imate methods, in contrast, show good results. Although
the precision is not too good (46%–74% & 33%–76%), the
average distance of 3.60–3.85 & 3.15–3.55 shows that the
wrongly selected nodes are still close to the perfect average
distance and thus are still good mapping candidates (in com-
parison, the distance of randomly selected points was 8.51
& 8.63). In conclusion, the approximate indexing methods,
especially HKM and KLSH, are well suited for RWS-Diff.
HKM is very fast even for larger datasets while KLSH has
very precise results close to the exact solution. Since HKM
is much faster than KLSH while its average distance is not
much worse, we use HKM for the further experiments.

Comparison to Other Methods. To evaluate the qual-
ity of our method we compare the results with other pro-
posed solutions. Here, the problem is that most methods
have only a limited set of operations or they work only on
unordered or ordered data. Even when they are compara-
ble they often suffer from excessive runtime or enormously
large edit scripts. Other comparative studies have found
these shortcomings as well [27, 15]. Both studies have also
found that XyDiff [21] is the only serious contender. In ad-
dition to XyDiff, we measure DiffXML [22] as an example
for a widely used open source tool for XML change detection
[23] with a worst-case complexity of O(n2).

To make the comparison fair we switch off insertSubtree,
deleteSubtree, and copy for our method as XyDiff does not
support them. DiffXML uses deleteSubtree, but we grant
that advantage. We use a uniform cost model, so the cost
of the resulting edit script is equal to its length. Both con-

tenders work in ordered mode. Since this can introduce
additional work and edit operations, we use our method in
ordered mode as well. The measured time does not include
reading and parsing the XML/HTML trees or writing the
edit script to a file.

Synthetic Changes. To show the runtime and quality for
different tree sizes and change patterns, we first measure the
results for synthetically changed trees. The trees are gener-
ated by extracting an increasing amount of nodes from the
real-world dataset nasa1 [33], which contains astronomical
XML data, and modifying the extracted tree. The size of the
extracted tree ranges from 100 to 100,000 nodes, but we stop
DiffXML early after 10,000 nodes because of its tremendous
runtime. The modification consists of (a) either random re-
names of one child of every node (one change per parent) or
(b) of 10 random inserts, deletes, renames, or moves within
the tree. The former change pattern represents a scenario
where many small changes are introduced across the whole
tree. Since one child of every node is modified simple meth-
ods might fail in this scenario. The latter change pattern
of 10 random changes represents a scenario where only a
comparably small part of the tree is changed. Of course, a
very short edit script is anticipated in this case. Finally (c),
we also measure an increasing amount of changes on a tree
of constant size (20,000 nodes). This change pattern shows
how the methods behave for a growing number of changes.

Figure 6 shows the number of edit operations (top) and
the runtime (bottom) for the three different change patterns
on the nasa1 dataset. The data points are smoothed by cal-
culating the moving average of 20 points. The error bars
depict the minima and maxima smoothed away. For the
two change patterns with a growing number of nodes in Fig-
ure 6(a,b) the horizontal axis shows the tree size, while for
the change pattern with a growing number of changes in Fig-
ure 6(c) the horizontal axis shows the number of changes.
Note the logarithmic vertical axis for the number of edit
operations in Figure 6(b).

The runtime plots at the bottom of the figure show that
RWS-Diff is around two to three times slower than a simple
matching approach like XyDiff. The runtime of RWS-Diff
always stays in the same order of magnitude as XyDiff and
therefore qualifies for the same application scenarios. The
runtime of both XyDiff and our method is almost linear
which backs up the claimed O(n logn) runtime bound. As
anticipated, the O(n2) runtime of DiffXML is infeasible for
larger scenarios.

The plots for the number of edit operations at the top
of the figure depict the quality gain of the similarity-based
matching: For the case with one change per parent, the
edit script of RWS-Diff is only around half as long as the
one of XyDiff. Surprisingly, it is also slightly smaller than
the more complex approach of DiffXML. Especially the sce-
nario with only 10 changes shows the quality and robustness
gains of our solution: XyDiff emits 74.5 changes on average
while RWS-Diff emits only 16.6 on average which is only
about 50% more than the exact solution and around 4.5
times less than XyDiff. In addition, our method is very ro-
bust as it never emits more than 68 operations, that is, 6.8
times more than the exact solution. In comparison, XyD-
iff sometimes yields comparably good results but often cre-
ates edit scripts with 100–1000 edit operations. Its largest
edit script even consists of 3255 operations which is more
than 300 times longer than the exact solution. Such an edit
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Figure 6: Edit operations and runtime for the nasa1 data set.

script is almost useless and demonstrates the huge robust-
ness problem of simple matching approaches. DiffXML is
even much worse than XyDiff for these few changes: It gen-
erated the astronomical amount of 850.8 changes on average
and a peak number of 2477 changes. Consequently, the ex-
periment shows that especially for common scenarios with
few changes per version, similarity-based matching can lower
the edit script size and increase robustness significantly—not
only in comparison to simple matching methods but also in
comparison to more expensive methods like DiffXML.

When examining a growing number of changes in Figure
6(c), our method always shows a considerable edit script
quality gain. For a very large number of changes (in this
case 8000+ changes for 20000 nodes), the edit script quality
of both methods becomes more similar. This is due to the
large amount of changes that alter the subtrees so much that
they are no longer similar (i.e., do not share any p,q-grams
anymore) and thus also render similarity-based approaches
like ours ineffective. However, using edit scripts for such a
large number of changes (almost half the tree size!) is very
likely to be inferior to saving all versions explicitly anyway.
Note that we did not measure DiffXML here as the tree
consisted of too many nodes to yield a reasonable runtime.

Website Data. We inspected the two news websites
www.bbc.co.uk/news and www.tagesschau.de in 20-minute
intervals. These websites were selected because they change
frequently. After collecting 900 different versions, we used
our approach, XyDiff, and DiffXML to calculate the differ-
ence between each consecutive pair of versions. DiffXML
was sometimes not up to the task and aborted with an ex-
ception; the following averages thus only considered the run-
times and results where it did not crash. While our previous
experiment only revealed the behavior on a synthetic set of
changes, this experiments shows how the methods perform
in a real scenario. Table 3 and 4 show the results for the
two datasets. In this real-world scenario, the quality gain by
using our similarity approach is even higher than for the syn-
thetic changes: While XyDiff is between 4 and 5 times faster
than our method because the number of changes is compara-
bly high, the quality of its edit script is highly inferior to our
method: For the bbc data set, our method produces on av-
erage an edit script that is almost 13 times smaller than the
one of XyDiff. In addition, our edit script is also around 4.5
times smaller than the one of DiffXML—even though Dif-
fXML is an O(n2) method and should therefore yield better
results. For the tagesschau data set, the edit script length of

Method AVG(#Edits) σ(#Edits) AVG(Runtime) σ(Runtime)

RWS-Diff 81.41 42.41 120.93 ms 9.61 ms
XyDiff 1034.14 405.46 37.12 ms 6.32 ms
DiffXML 359.12 278.37 2649.49 ms 244.99 ms

Table 3: Result for the bbc data set

Method AVG(#Edits) σ(#Edits) AVG(Runtime) σ(Runtime)

RWS-Diff 61.32 87.37 126.58 ms 10.76 ms
XyDiff 381.02 736.58 25.15 ms 8.39 ms
DiffXML 313.39 299.90 1399.85 ms 309.64 ms

Table 4: Result for the tagesschau data set

our method is around 6 times smaller than those of XyDiff
and DiffXML. The low standard deviation of our method for
both data sets shows that similarity-based matching drasti-
cally increases the robustness of the method and thus leads
to a more constant edit script quality. In contrast, the meth-
ods without similarity sometimes produce very inflated edit
scripts: XyDiff produced 2083 edit operations between two
versions of the bbc dataset while our method produced only
7 for these versions which is around 238 times less.

Our experiments revealed that the theoretical advantage
of similarity matching is indeed also a practical one. The
edit script quality is considerably increased (even in com-
parison to an O(n2) method) while the runtime stays com-
parable to simple matching approaches. The similarity also
increases the robustness by drastically reducing the variance
of the edit script quality. Consequently, similarity-based edit
script generation is a viable tool for scenarios where a short
edit script is desired but runtime is still important.

Although the runtimes of our algorithm and XyDiff are
comparable, XyDiff is still faster which was to be expected
since similarity computations are more expensive than sim-
ple matching computations. In contrast, edit script quality
and especially robustness is consistently improved a lot by
the similiarity matching. In almost all applications, this
quality/runtime tradeoff is in favor RWS-Diff, since an edit
script is read more often than it is generated: A smaller edit
script makes applying that script faster. Since applying an
edit script to go back to a former version is the core of most
version control systems that use edit scripts, the additional
generation runtime will pay off by a reduced runtime for ap-
plying the script. Also when changes are used to reconcile
or visualize changes, a shorter script uses less bandwidth
and yields a better visualization of the changes and is thus
always preferable. In conclusion, similarity-based matching
is usually worth its increased runtime.



7. CONCLUSION
We proposed a method for rapidly generating an approx-
imately cost-minimal edit script between two trees. Our
approach uses subtree similarity for finding a comparably
good mapping in cases where simple matching methods like
top-down or hash matching fail. Nevertheless, it retains the
quasi-linear runtime of such simple methods. The similarity
matching is executed by first summarizing each unmapped
subtree by a bag of p,q-grams, hashing each of the grams,
and generating a random d-dimensional vector from each
hash. Then, the vectors are added generating a random walk
feature vector. The random walks possess the property that
the squared euclidean distance of two walks approximates
the symmetric bag distance of the corresponding bags and
is therefore a suitable similarity measure. By using index
structures, we perform a rapid nearest neighbors search on
the feature vectors to complete the edit mapping. The pro-
posed algorithm is flexible as it can handle various types of
edit operations and works for ordered and unordered trees.

Our evaluation has shown that the similarity search is
able to decrease the length of the edit scripts up to an or-
der of magnitude while the runtime stays similar to previ-
ously published simple matching approaches. This consti-
tutes an important advancement, since a short edit script is
extremely beneficial for all applications. In addition to the
overall decrease in edit script length, the chance that the
matching fails—leading to a huge edit script—is drastically
reduced by the similarity matching, so the quality of the
generated edit script is far more constant than the quality
of previous contributions. RWS-Diff is thus the first gen-
erally applicable robust tree diff algorithm with log-linear
runtime complexity.
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[25] L. Paulevé, H. Jégou, and L. Amsaleg. Locality
sensitive hashing: A comparison of hash function
types and querying mechanisms. PRL, 31(11), 2010.

[26] M. Pawlik and N. Augsten. RTED: a robust algorithm
for the tree edit distance. PVLDB, 5(4), 2011.
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